首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Lee  Boon-Beng  Bhandari  Bhesh R.  Ching  Su Hung  Howes  Tony 《Food biophysics》2019,14(4):365-382

The ability of encapsulation to protect hydrophilic–bioactive food compounds from harsh environments can be improved by strengthening the hydrophilic barriers of encapsulated food compounds in Ca-alginate microgel particles via the integration of oil into the microgels. This study introduces a one-step procedure to integrate water-in-oil (W/O) emulsion droplets directly into Ca-alginate microgels during the production using the impinging aerosols system. A water-in-oil-in-water (20 kg m−3 alginate solution) (W1/O/W2) double emulsion was prepared using a high speed homogeniser followed by a microfluidiser. The microstructure of the W1/O/W2 emulsion was analysed using optical and fluorescence microscopy. The mean diameters of the W1/O/W2 emulsion droplets and resultant microgels were in the range of 27.8–65.4 μm and 160–420 μm, respectively. Food dye was used as a proxy for a hydrophilic food compound and its release from the microgels was significantly decreased when it was encapsulated in the W/O emulsion droplets. Based on the numerical analysis, the presence of the W/O emulsion droplets in the gel network reduced the degree of gelation of the microgel because the diffusion rate of Ca2+ cation in the microgel is reduced. The degree of gelation of the W/O emulsion droplets encapsulated microgel is 0.6 when the diameter of the droplet is reduced to 77.5 μm and the concentration of CaCl2 solution is doubled to 22 kg m−3. The potentiality of the impinging aerosol system to produce Ca-alginate microgels to encapsulate hydrophilic compounds with improved barriers is presented in this work.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号