首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   29篇
  126篇
  2022年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   7篇
  1987年   7篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   3篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有126条查询结果,搜索用时 0 毫秒
1.
Microorganisms capable of metabolizing the herbicide metolachlor   总被引:3,自引:0,他引:3  
We screened several strains of microorganisms and microbial populations for their ability to mineralize or transform the herbicide metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetami de] because such cultures would potentially be useful in the cleanup of contaminated sites. Although we used various inocula and enrichment culture techniques, we were not able to isolate microorganisms that could mineralize metolachlor. However, strains of Bacillus circulans, Bacillus megaterium, Fusarium sp., Mucor racemosus, and an actinomycete were found to transform metolachlor. Several metabolites could be determined with high-performance liquid chromatography. The tolerance of the strains to high concentrations of metolachlor was also evaluated for the usefulness of the strains for decontamination. Tolerance of the actinomycete to metolachlor concentrations over 200 ppm (200 micrograms/ml) was low and could not be increased by doubling the sucrose concentration in the growth medium or by using a large biomass as inoculum. However, a Fusarium sp. could grow and transform metolachlor up to a concentration of 300 ppm.  相似文献   
2.
We have studied intrachromosomal gene conversion in mouse Ltk- cells with a substrate designed to provide genetic evidence for heteroduplex DNA. Our recombination substrate consists of two defective chicken thymidine kinase genes arranged so as to favor the selection of gene conversion products. The gene intended to serve as the recipient in gene conversion differs from the donor sequence by virtue of a palindromic insertion that creates silent restriction site polymorphisms between the two genes. While selection for gene conversion at a XhoI linker insertion within the recipient gene results in coconversion of the nearby palindromic site in more than half of the convertants, 4% of convertant colonies show both parental and nonparental genotypes at the polymorphic site. We consider these mixed colonies to be the result of genotypic sectoring and interpret this sectoring to be a consequence of unrepaired heteroduplex DNA at the polymorphic palindromic site. DNA replication through the heteroduplex recombination intermediate generates genetically distinct daughter cells that comprise a single colony. We believe that the data provide the first compelling genetic evidence for the presence of heteroduplex DNA during chromosomal gene conversion in mammalian cells.  相似文献   
3.
Pyridine and its derivatives have been found as pollutants in the environment. Although alkylpyridines constitute the largest class of pyridines contaminating the environment, little information is available concerning the fate and transformation of these compounds. In this investigation ethylpyridines have been used as model compounds for investigating the biodegradability of alkylpyridines. A mixed culture of ethylpyridine-degrading microorganisms was obtained from a soil that had been exposed to a variety of pyridine derivatives for several decades. The enrichment culture was able to degrade 2-, 3-, and 4-ethylpyridine (100 mg/L) at 28° C and pH 7 within two weeks under aerobic conditions. The degradation rate was greatest for 2-ethylpyridine and least for 3-ethylpyridine. Transformation of ethylpyridines was dependent on substrate concentration, pH, and incubation temperature. Studies on the metabolic pathway of 4-ethylpyridine revealed two products; these chemicals were identified by MS and NMR analyses as 4-ethyl-2(1H)-pyridone and 4-ethyl-2-piperidone. 6-Ethyl-2(1H)-pyridone was determined to be a product of 2-ethylpyridine degradation. These results indicate that the transformation mechanism of ethylpyridines involves hydroxylation and reduction of the aromatic ring before ring cleavage.  相似文献   
4.
The soil fungus Rhizoctonia praticola produced an enzyme that accumulated in the growth medium and caused the polymerization of phenolic and naphtholic intermediates of various pesticides. The dialyzed crude enzyme was purified by ion-exhange column chromatography with diethylaminoethyl-cellulose, followed by gel filtration with Sephadex G-200. The enzyme, a phenol oxidase, was capable of polymerizing 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, and 4-bromo-2-chlorophenol. 1-Naphthol, 2-naphthol, and some of their derivatives formed oligomers or polymers when incubated with the enzyme, but 4-nitrophenol and 2,4-dinitriphenol were not oxidized. Chlorinated and brominated anilines, which are derivatives of herbicides, were not altered by the phenol oxidase from R. praticola, but 4-methoxyaniline was transformed by the enzyme to 2-amino-5-p-anisidinobenzoquinone-di-p-methoxyphenylimine. The formation of polymeric products was determined by mass spectrometric analysis.  相似文献   
5.
The fate of cadmium in soil is influenced to a great extent by microbial activity. Microorganisms were compared with abiotic soil components for their ability to sorb Cd from a liquid medium. When the same amount (on a dry weight basis) of bacterial cells (Serratia marcescens and Paracoccus sp.), clay (montmorillonite), or sand was separately incubated in 0.05 M phosphate buffer, pH 7.2, containing 10 ppm of Cd (10 μg/ml), bacterial cells removed the largest quantity of Cd. Dead cells sorbed much more Cd from the medium than live cells. A comparative study of Cd removal from the medium by seven soil bacteria and four fungi did not indicate appreciable differences. With increasing microbial biomass, the relative efficiency of 0.1 M NaOH as an extractant of sorbed Cd increased, whereas the extraction efficiency of 0.005 M DTPA (diethylenetriaminepentaacetic acid) decreased. It appeared that NaOH and DTPA extracted different chemical forms of Cd. This assumption was supported by vastly different correlation coefficients in the relative amount of Cd extracted by the two solvents.  相似文献   
6.
In the bovine adrenal glomerulosa cell, calcium influx through voltage-dependent calcium channels is critical to maintaining an aldosterone secretory response. In patch clamp, atrial natriuretic peptide (ANP) inhibits T-type calcium channel current yet stimulates L-type calcium channel current. In the present study the channel effects of ANP observed in the patch-clamp configuration were extended and related to populations of cells. We observed the following. (i) The effect of ANP on T-channel current resulted in the reduction in the open state probability. ANP decreased the mean open state duration from 14.2 to 1.8 ms/sweep. (ii) In the weakly depolarized cell stimulated by 8 mM K+, ANP reduced the level of aequorin luminescence (a measure of cytosolic calcium) and completely inhibited the stimulated rate of aldosterone secretion, returning it to prestimulation values. These effects are consistent with a decrease in net calcium channel influx and the reported inhibition of T-channel current. In contrast, the calcium channel blocker, nitrendipine, which at low dose selectively blocks L-type calcium channel flux, only slightly reduced luminescence, and partially inhibited the sustained secretory response. (iii) In the strongly depolarized cell, stimulated by 60 mM K+, ANP increased the level of aequorin luminescence consistent with an increase in net calcium channel influx and the reported stimulation of L-channel current. These results indicate that under physiological conditions the inhibition of T-type calcium channels may be involved in the inhibition of the aldosterone secretion induced by ANP.  相似文献   
7.
Human basic fibroblast growth factor (hbFGF) has been modified, with Ala3 and Ser5 substituted by glutamic acid, and the purified recombinant protein has been crystallized. The crystals are triclinic (space group P1) with unit cell parameters a = 31.0 A, b = 33.6 A, c = 34.7 A, alpha = 88 degrees, beta = 85 degrees, gamma = 76 degrees, and they diffract to at least 2 A.  相似文献   
8.
Second messengers are small rapidly diffusing molecules or ions that relay signals between receptors and effector proteins to produce a physiological effect. Lipid messengers constitute one of the four major classes of second messengers. The hydrolysis of two main classes of lipids, glycerophospholipids and sphingolipids, generate parallel profiles of lipid second messengers: phosphatidic acid (PA), diacylglycerol (DAG), and lysophosphatidic acid versus ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate, respectively. In this review, we examine the mechanisms by which these lipid second messengers modulate aldosterone production at multiple levels. Aldosterone is a mineralocorticoid hormone responsible for maintaining fluid volume, electrolyte balance, and blood pressure homeostasis. Primary aldosteronism is a frequent endocrine cause of secondary hypertension. A thorough understanding of the signaling events regulating aldosterone biosynthesis may lead to the identification of novel therapeutic targets. The cumulative evidence in this literature emphasizes the critical roles of PA, DAG, and sphingolipid metabolites in aldosterone synthesis and secretion. However, it also highlights the gaps in our knowledge, such as the preference for phospholipase D-generated PA or DAG, as well as the need for further investigation to elucidate the precise mechanisms by which these lipid second messengers regulate optimal aldosterone production.  相似文献   
9.
Rho GTPases play a fundamental role in numerous cellular processes that are initiated by extracellular stimuli including agonists that work through G protein-coupled receptors. A direct pathway for such regulation was elucidated by the identification of p115 RhoGEF, an exchange factor for RhoA that is activated through its RGS domain by G alpha(13). Endogenous p115 RhoGEF was found mainly in the cytosol of serum-starved cells but partially localized to membranes in cells stimulated with lysophosphatidic acid. Overexpressed p115 RhoGEF was equally distributed between membranes and cytosol; either the RGS or pleckstrin homology domain was sufficient for this partial targeting to membranes. Removal of the pleckstrin homology domain dramatically reduced the in vitro rate of p115 RhoGEF exchange activity. Deletion of amino acids 252--288 in the linker region between the RGS domain and the Dbl homology domain or of the last 150 C-terminal amino acids resulted in non-additive reduction of in vitro exchange activity. In contrast, p115 RhoGEF pieces lacking this extended C terminus were over 5-fold more active than the full-length exchange factor in vivo. These results suggest that p115 RhoGEF is inhibited in the cellular milieu through modification or interaction of inhibitory factors with its C terminus. Endogenous p115 RhoGEF that was immunoprecipitated from cells stimulated with lysophosphatidic acid or sphingosine 1-phosphate was more active than when the enzyme was immunoprecipitated from untreated cells. This indicates an additional and potentially novel long lived mechanism for regulation of p115 RhoGEF by G protein-coupled receptors.  相似文献   
10.
Glucose-dependent insulinotropic peptide (GIP) potentiates glucose-induced insulin secretion. In addition, GIP has vasoconstrictive or vasodilatory properties depending on the vascular bed affected. In order to assess whether this effect could be related to differences in GIP receptor expression, several different endothelial cell types were examined for GIP receptor expression. GIP receptor splice variants were detected and varied depending on the endothelial cell type. Furthermore, stimulation of these cells with GIP led to cell type dependent differences in activation of the calcium and cAMP signaling pathways. To our knowledge this is the first physiological characterization of receptors for GIP in endothelial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号