首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   4篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2001年   1篇
  1997年   2篇
排序方式: 共有11条查询结果,搜索用时 21 毫秒
1.
Simple bilayer solar cells, using commercially available cationic cyanine dyes as donors and evaporated C60 layer as an acceptor are prepared. Cyanine dyes with absorption maxima of 578, 615 and 697 nm having either perchlorate or hexafluorophosphate counter‐ions are evaluated. The perchlorate dye leads to cells with S‐shape current‐voltage curves; only the dyes with the hexafluorophosphate counter‐ions lead to efficient solar cells. When the wide bandgap dyes are employed, S‐shape current‐voltage curves are obtained when the conductive polymer PEDOT:PSS is used as hole transport layer. Substitution of PEDOT:PSS with MoO3 leads to cells with more rectangular current–voltage curves and high fill factors. Additionally, the cells using the MoO3 layer for hole extraction lead to high open circuit voltages of 0.9 V. In the case that a low bandgap hexafluorophosphate dye is used with the HOMO above that of the PEDOT:PSS the cell performance is independent on the type of hole transport layer employed. Using this approach, bilayer solar cells are obtained with power efficiencies ranging from 1.8 to 2.9% depending on the particular dye employed. These are impressive numbers for bilayer solar cell that are partially solution processed in ambient conditions.  相似文献   
2.
3.
Metal‐oxide‐free methylammonium lead iodide perovskite‐based solar cells are prepared using a dual‐source thermal evaporation method. This method leads to high quality reproducible films with large crystal domain sizes allowing for an in depth study of the effect of perovskite film thickness and the nature of the electron and hole blocking layers on the device performance. The power conversion efficiency increases from 4.7% for a device with only an organic electron blocking layer to almost 15% when an organic hole blocking layer is also employed. In addition to the in depth study on small area cells, larger area cells (approx. 1 cm?2) are prepared and exhibit efficiencies in excess of 10%.  相似文献   
4.
Hybrid lead halide perovskites are promising materials for future photovoltaics applications. Their spectral response can be readily tuned by controlling the halide composition, while their stability is strongly dependent on the film morphology and on the type of organic cation used. Mixed cation and mixed halide systems have led to the most efficient and stable perovskite solar cells reported, so far they are prepared exclusively by solution‐processing. This might be due to the technical difficulties associated with the vacuum deposition from multiple thermal sources, requiring a high level of control over the deposition rate of each precursor during the film formation. In this report, thermal vacuum deposition with multiple sources (3 and 4) is used to prepare for the first time, multications/anions perovskite compounds. These thin‐film absorbers are implemented into fully vacuum deposited solar cells using doped organic semiconductors. A maximum power conversion efficiency of 16% is obtained, with promising device stability. The importance of the control over the film morphology is highlighted, which differs substantially when these compounds are vacuum processed. Avenues to improve the morphology and hence the performance of fully vacuum processed multications/anions perovskite solar cells are proposed.  相似文献   
5.
Tosserams  Marcel  Bolink  Esther  Rozema  Jelte 《Plant Ecology》1997,128(1-2):139-147
The germination of seeds of seven plant species occurring in a dune grassland vegetation of the Netherlands, was studied at four levels of UV-B radiation simulating unto 45% stratospheric ozone reduction during April. With the exception of seeds of Senecio jacobaea, germination of the dune grassland species was not affected by enhanced UV-B irradiance. Although a clear UV-B fluence-response relationship was not observed, the germination rate of S. jacobaea seeds and maximal germination percentage were reduced at enhanced UV-B. Germination rate in the dark was higher than germination in the light for Oenothera biennis, Plantago lanceolata, Rumex obtusifolius and S. jacobaea. Total dry biomass accumulation of seedlings was not affected by increased UV-B radiation in any of the species tested. Clear-cut differences in UV-absorbance of methanolic extracts were observed between species. Enhanced UV-B irradiance stimulated UV-absorbance of seedling extracts of Holcus lanatus and Verbascum thapsus. A clear UV-B fluence-response relationship was observed for both species. The results indicate that germination of the studied plant species probably will not be adversely affected by the expected stratospheric ozone reduction in The Netherlands.  相似文献   
6.
7.
Pea (Pisum sativum L.) and bean (Phaseolus vulgaris L.) plants were exposed to enhanced levels of UV-B radiation in a growth chamber. Leaf discs of UV-B treated and control plants were exposed to high-light (HL) stress (PAR: 1200 mol m–2 s–1) to study whether pre-treatment with UV-B affected the photoprotective mechanisms of the plants against photoinhibition. At regular time intervals leaf discs were taken to perform chlorophyll a fluorescence and oxygen evolution measurements to assess damage to the photosystems. Also, after 1 h of HL treatment the concentration of xanthophyll cycle pigments was determined. A significantly slower decline of maximum quantum efficiency of PSII (F v/F m), together with a slower decline of oxygen evolution during HL stress was observed in leaf discs of UV-B treated plants compared to controls in both plant species. This indicated an increased tolerance to HL stress in UV-B treated plants. The total pool of xanthophyll cycle pigments was increased in UV-B treated pea plants compared to controls, but in bean no significant differences were found between treatments. However, in bean plants thiol concentrations were significantly enhanced by UV-B treatment, and UV-absorbing compounds increased in both species, indicating a higher antioxidant capacity. An increased leaf thickness, together with increases in antioxidant capacity could have contributed to the higher protection against photoinhibition in UV-B treated plants.  相似文献   
8.
van de Staaij  J.W.M.  Bolink  E.  Rozema  J.  Ernst  W.H.O. 《Plant Ecology》1997,128(1-2):173-179
A highland (altitude 1600 m) and a lowland (altitude –2 m) population of the perennial herb Silene vulgaris were tested on the effects of elevated levels of UV-B radiation on their reproductivity. Highland populations receive higher natural UV-B doses than lowland populations. Therefore adaptation to high UV-B levels of the highland population is to be expected. The lowland population showed a decrease in the number of seed producing flowers and the number of seeds produced per plant under elevated UV-B levels. The highland population increased the number of seeds per plant under elevated UV-B levels. In both populations individual seed mass as well as seed germination percentages were unaffected by the UV-B flux received by the parental plant. Possible effects of UV-B induced alterations in reproductivity on the geographical distribution of the different populations are discussed.  相似文献   
9.
Electroluminescent devices have the potential to reshape lighting and display technologies by providing low‐energy consuming solutions with great aesthetic features, such as flexibility and transparency. In particular, light‐emitting electrochemical cells (LECs) are among the simplest electroluminescent devices. The device operates with air‐stable materials and the active layer can be resumed to an ionic phosphorescent emitter. As a consequence, LECs can be assembled using solution‐process technologies, which could allow for low‐cost and large‐area lighting applications in the future. High efficiencies have been reported at rather low luminances (<50 cd m?2) and at very low current densities. Moreover, these efficiencies could be sustained for a brief moment only during operation time. Here, we demonstrate that a pulsed driving mode at low current densities leads to unequalled overall performances with excellent efficiencies throughout the lifetime of the device. The lifetime of the LECs is defined as the time it takes to reach 50% of the peak luminance. Upon optimization of various parameters (frequency, duty cycle and average current density), the green LEC reaches efficacies and power efficiencies of 28.2 cd A?1 and 17.1 lm W?1, respectively, at a luminance above 750 cd m?2 and 98 hours lifetime. The present work also rationalizes why high efficiencies have been obtained only at low current densities so far.  相似文献   
10.
To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of contacts, the electron and hole transport layers, charge generation, drift and diffusion of charge carriers and recombination. The simulation to the experimental data of vacuum‐deposited CH3NH3PbI3 solar cells over multiple thicknesses has been fit and the device behavior under different operating conditions has been studied to delineate the influence of the external bias, charge‐carrier mobilities, energetic barriers for charge injection/extraction and, different recombination channels on the solar cell performance. By doing so, a unique set of material parameters and physical processes that describe these solar cells is identified. Trap‐assisted recombination at material interfaces is the dominant recombination channel limiting device performance and passivation of traps increases the power conversion efficiency (PCE) of these devices by 40%. Finally, guidelines to increase their performance have been issued and it is shown that a PCE beyond 25% is within reach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号