首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   3篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1967年   1篇
  1949年   1篇
  1947年   2篇
  1943年   3篇
  1941年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
Babesia odocoilei from white-tailed deer (Odocoileus virginianus) in Texas (USA) and B. capreoli isolated from sika deer (Cervus nippon) in Ireland were compared morphologically and antigenically. Babesia odocoilei and B. capreoli paired pyriforms resembled each other closely when in sika deer, but B. odocoilei pyriforms in white-tailed deer were slightly different. Babesia odocoilei in white-tailed deer also differed from B. odocoilei and B. capreoli in sika deer in the frequency of its developmental forms. Indirect immunofluorescence antibody test titres showed that there was some antigen cross-reactivity, but not as much as between B. capreoli and the bovine parasite, B. divergens. The Babesia spp. from deer that we studied appear to be distinct but related species. The low infectivity of B. odocoilei for a splenectomised sika deer suggests that sika deer in North America are probably not very susceptible to this parasite in the wild.  相似文献   
2.
Glycoprotein B homologs represent the most highly conserved group of herpesvirus glycoproteins. They exist in oligomeric forms based on a dimeric structure. Despite the high degree of sequence and structural conservation, differences in posttranslational processing are observed. Whereas gB of herpes simplex virus is not proteolytically processed after oligomerization, most other gB homologs are cleaved by a cellular protease into subunits that remain linked via disulfide bonds. Proteolytic cleavage is common for activation of viral fusion proteins, and it has been shown that herpesvirus gB homologs are essential for membrane fusion events during infection, e.g., virus penetration and direct viral cell-to-cell spread. To analyze the importance of proteolytic cleavage for the function of gB homologs, we isolated a mutant bovine herpesvirus 1 (BHV-1) expressing a BHV-1 gB that is no longer proteolytically processed because of a deletion of the proteolytic cleavage site and analyzed its phenotype in cell culture. We showed previously that BHV-1 gB can functionally substitute for the homologous glycoprotein in pseudorabies virus (PrV), based on the isolation of a PrV gB-negative PrV recombinant that expresses BHV-1 gB (A. Kopp and T. C. Mettenleiter, J. Virol, 66:2754-2762, 1992). Therefore, we also isolated a mutant PrV lacking PrV gB but expressing a noncleavable BHV-1 gB. Our results show that cleavage of BHV-1 gB is not essential for its function in either a BHV-1 or a PrV background. Compared with the PrV recombinant expressing cleavable BHV-1 gB, deletion of the cleavage site in the recombinant PrV did not detectably alter the viral phenotype, as analyzed by plaque assays, one-step growth kinetics, and penetration kinetics. In the BHV-1 mutant, the uncleaved BHV-1 gB was functionally equivalent to the wild-type protein with regard to penetration and showed only slightly delayed one-step growth kinetics compared with parental wild-type BHV-1. However, the resulting plaques were significantly smaller, indicating a role for proteolytic cleavage of BHV-1 gB in cell-to-cell spread of BHV-1.  相似文献   
3.
After disulphide bonds are reduced with dithiothreitol, trans-3- (α-bromomethyl)-3’-[α- (trimethylammonium)methyl]azobenzene (trans-QBr) alkylates a sulfhydryl group on receptors. The membrane conductance induced by this “tethered agonist” shares many properties with that induced by reversible agonists. Equilibrium conductance increases as the membrane potential is made more negative; the voltage sensitivity resembles that seen with 50 [mu]M carbachol. Voltage- jump relaxations follow an exponential time-course; the rate constants are about twice as large as those seen with 50 μM carbachol and have the same voltage and temperature sensitivity. With reversible agonists, the rate of channel opening increases with the frequency of agonist-receptor collisions: with tethered trans-Qbr, this rate depends only on intramolecular events. In comparison to the conductance induced by reversible agonists, the QBr-induced conductance is at least 10-fold less sensitive to competitive blockade by tubocurarine and roughly as sensitive to “open-channel blockade” bu QX-222. Light-flash experiments with tethered QBr resemble those with the reversible photoisomerizable agonist, 3,3’,bis-[α-(trimethylammonium)methyl]azobenzene (Bis-Q): the conductance is increased by cis {arrow} trans photoisomerizations and decreased by trans {arrow} cis photoisomerizations. As with Bis-Q, ligh-flash relaxations have the same rate constant as voltage-jump relaxations. Receptors with tethered trans isomer. By comparing the agonist-induced conductance with the cis/tans ratio, we conclude that each channel’s activation is determined by the configuration of a single tethered QBr molecule. The QBr-induced conductance shows slow decreases (time constant, several hundred milliseconds), which can be partially reversed by flashes. The similarities suggest that the same rate-limiting step governs the opening and closing of channels for both reversible and tethered agonists. Therefore, this step is probably not the initial encounter between agonist and receptor molecules.  相似文献   
4.
5.
Two crystalline forms of (dithiodiphenylphosphinate)(phenyl)(triphenylphosphine)-palladium(II) (C36H30P2PdS2), one without solvent, the other containing THF (C4H8O), are obtained after reaction of sodium diphenyldithiophosphinate with (phenyl) (bis-triphenylphosphine) palladium(II) chloride and crystallisation from two different solvent mixtures. The molecular structures, as determined by single crystal X-ray diffraction, differ in the planarity of the 4-membered palladium dithiophosphinate rings. The experimental conformations have been compared to the conformations of four-membered metal-S2P rings reported in the Cambridge Structural Database. A flat conformation is more common than a puckered one. DFT calculations at the B3LYP level of theory indicate that the flat conformation of a model metallodithiophosphinate ring is very slightly lower in energy (1.2 kcal/mol) than the puckered conformation.  相似文献   
6.
PUF proteins are eukaryotic RNA-binding proteins that repress specific mRNAs. The mechanisms and corepressors involved in PUF repression remain to be fully identified. Here, we investigated the mode of repression by Saccharomyces cerevisiae Puf5p and Puf4p and found that Puf5p specifically requires Eap1p to repress mRNAs, whereas Puf4p does not. Surprisingly, we observed that Eap1p, which is a member of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein (4E-BP) class of translational inhibitors, does not inhibit the efficient polyribosome association of a Puf5p target mRNA. Rather, we found that Eap1p accelerates mRNA degradation by promoting decapping, and the ability of Eap1p to interact with eIF4E facilitates this activity. Deletion of EAP1 dramatically reduces decapping, resulting in accumulation of deadenylated, capped mRNA. In support of this phenotype, Eap1p associates both with Puf5p and the Dhh1p decapping factor. Furthermore, recruitment of Eap1p to downregulated mRNA is mediated by Puf5p. On the basis of these results, we propose that Puf5p promotes decapping by recruiting Eap1p and associated decapping factors to mRNAs. The implication of these findings is that a 4E-BP can repress protein expression by promoting specific mRNA degradation steps in addition to or in lieu of inhibiting translation initiation.  相似文献   
7.
MurM is an aminoacyl ligase that adds l-serine or l-alanine as the first amino acid of a dipeptide branch to the stem peptide lysine of the pneumococcal peptidoglycan. MurM activity is essential for clinical pneumococcal penicillin resistance. Analysis of peptidoglycan from the highly penicillin-resistant Streptococcus pneumoniae strain 159 revealed that in vivo and in vitro, in the presence of the appropriate acyl-tRNA, MurM(159) alanylated the peptidoglycan epsilon-amino group of the stem peptide lysine in preference to its serylation. However, in contrast, identical analyses of the penicillin-susceptible strain Pn16 revealed that MurM(Pn16) activity supported serylation more than alanylation both in vivo and in vitro. Interestingly, both MurM(Pn16) acylation activities were far lower than the alanylation activity of MurM(159). The resulting differing stem peptide structures of 159 and Pn16 were caused by the profoundly greater catalytic efficiency of MurM(159) compared with MurM(Pn16) bought about by sequence variation between these enzymes and, to a lesser extent, differences in the in vivo tRNA(Ala):tRNA(Ser) ratio in 159 and Pn16. Kinetic analysis revealed that MurM(159) acted during the lipid-linked stages of peptidoglycan synthesis, that the d-alanyl-d-alanine of the stem peptide and the lipid II N-acetylglucosaminyl group were not essential for substrate recognition, that epsilon-carboxylation of the lysine of the stem peptide was not tolerated, and that lipid II-alanine was a substrate, suggesting an evolutionary link to staphylococcal homologues of MurM such as FemA. Kinetic analysis also revealed that MurM recognized the acceptor stem and/or the TPsiC loop stem of the tRNA(Ala). It is anticipated that definition of the minimal structural features of MurM substrates will allow development of novel resistance inhibitors that will restore the efficacy of beta-lactams for treatment of pneumococcal infection.  相似文献   
8.
PUF proteins are potent repressors that serve important roles in stem cell maintenance, neurological processes, and embryonic development. These functions are driven by PUF protein recognition of specific binding sites within the 3′ untranslated regions of target mRNAs. In this study, we investigated mechanisms of repression by the founding PUF, Drosophila Pumilio, and its human orthologs. Here, we evaluated a previously proposed model wherein the Pumilio RNA binding domain (RBD) binds Argonaute, which in turn blocks the translational activity of the eukaryotic elongation factor 1A. Surprisingly, we found that Argonautes are not necessary for repression elicited by Drosophila and human PUFs in vivo. A second model proposed that the RBD of Pumilio represses by recruiting deadenylases to shorten the mRNA''s polyadenosine tail. Indeed, the RBD binds to the Pop2 deadenylase and accelerates deadenylation; however, this activity is not crucial for regulation. Rather, we determined that the poly(A) is necessary for repression by the RBD. Our results reveal that poly(A)-dependent repression by the RBD requires the poly(A) binding protein, pAbp. Furthermore, we show that repression by the human PUM2 RBD requires the pAbp ortholog, PABPC1. Pumilio associates with pAbp but does not disrupt binding of pAbp to the mRNA. Taken together, our data support a model wherein the Pumilio RBD antagonizes the ability of pAbp to promote translation. Thus, the conserved function of the PUF RBD is to bind specific mRNAs, antagonize pAbp function, and promote deadenylation.  相似文献   
9.
Accurate DNA sequencing is crucial in biomedicine. Underlying the most accurate methods is the assumption that a mutation is true if altered bases are present on both strands of the DNA duplex. We now show that this assumption can be wrong. We establish that current methods to prepare DNA for sequencing, via ‘End Repair/dA-Tailing,’ may substantially resynthesize strands, leading amplifiable lesions or alterations on one strand to become indiscernible from true mutations on both strands. Indeed, we discovered that 7–17% and 32–57% of interior ‘duplex base pairs’ from cell-free DNA and formalin-fixed tumor biopsies, respectively, could be resynthesized in vitro and potentially introduce false mutations. To address this, we present Duplex-Repair, and show that it limits interior duplex base pair resynthesis by 8- to 464-fold, rescues the impact of induced DNA damage, and affords up to 8.9-fold more accurate duplex sequencing. Our study uncovers a major Achilles’ heel in sequencing and offers a solution to restore high accuracy.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号