首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   18篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   10篇
  2016年   5篇
  2015年   8篇
  2014年   16篇
  2013年   15篇
  2012年   16篇
  2011年   19篇
  2010年   9篇
  2009年   17篇
  2008年   13篇
  2007年   18篇
  2006年   9篇
  2005年   14篇
  2004年   12篇
  2003年   6篇
  2002年   9篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   7篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有297条查询结果,搜索用时 75 毫秒
1.
A bioactivity-guided chemical study of Iostephane heterophylla (Asteraceae) led to the isolation of xanthorrhizol (1) as the compound that causes inhibition of ATP synthesis, H+-uptake and electron flow from water to methylviologen (basal, phosphorylating and uncoupled) in freshly lysed spinach chloroplasts, thus acting as an inhibitor of the Hill reaction. Acetyl (2), dihydro (3) and acetyl-dihydro (4) derivatives were synthesized. It was found that 4 was less active than 1 and 2 in ATP synthesis, whereas 3 was the most potent inhibitor of the Hill reaction and was also an inhibitor of H+-ATPase. Studies of the photosynthetic partial redox reactions from PQ to MV indicated that 1 partially inhibited the PQ pool, but that 3 did not. However, both inhibited the uncoupled electron transport in PSII from water to DCBQ. Uncoupled electron flow from water to silicomolybdate was completely inhibited by 3 and partially by 1. The reaction from DPC to DCPIP was inhibited by both 1 and 3. These results indicate that the inhibition site is located within PSII for 1 and 3 as was corroborated by fluorescence decay data.  相似文献   
2.
A very sensitive method for the detection of antigen-antibody complexes on nitrocellulose paper immunoblots is described. The protein antigens are separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by their electrophoretic transfer onto a nitrocellulose sheet (“Western blot”). The protein antigens bound to the nitrocellulose paper are exposed to the monoclonal antibody and the antibody-antigen complexes are detected on the paper by an immunoenzymatic reaction. The improved sensitivity of this method is the result of (i) the use of the detergent Tween 20 in blocking the nonspecific binding of the antibodies to the nitrocellulose paper, (ii) the use of a peroxidase-antiperoxidase (PAP) reaction, and (iii) the intensification of the diaminobenzidine reaction product with nickel and cobalt ions in phosphate buffer.  相似文献   
3.
4.
Subunit-specific antibodies to all the γ subunit isoforms described in mammalian brain (γ1, γ2S, γL, and γ3) have been made. The proportion of GABAA receptors containing each γ subunit isoform in various brain regions has been determined by quantitative immunoprecipitation. In all tested regions of the rat brain, the γ1, and γ3 subunits are present in considerable smaller proportion of GABAA receptor than the γ2 subunit. Immunocytochemistry shows that γ1 immunoreactivity concentrates in the stratum oriens and stratum radiatum of the CA1 region of the hippocampus. In the dentate gyrus, γ1 immunoreactivity concentrates on the outer 2/3 of the molecular layer coinciding with the localization of the axospinous synapses of the perforant pathway. In contrast, γ3 immunoreactivity concentrates on the basket cells and other GABAergic local circuit neurons of the hilus. These cells are also rich in γ2S. In the cerebellu, γ1 immunolabeling was localized on the Bergmann glia. The γ2S and γ2L subunits are differentially expressed in various brain regions. Thus the γ2S is highly expressed in the olfactory bulb and hippocampus whereas the γ2L is very abundant in inferior colliculus and cerebellum, particularly in Purkinje cells, as immunocytochemistry, in situ hybridization and immunoprecipitation techniques have revealed. The γ2S and γ2L coexist in some brain areas and cell types. Moreover, the γ2S and γ2L subunits can coexist in the same GABAA receptor pentamer. We have shown that this is the case in some GABAA receptors expressed in cerebellar granule cells. These GABAA receptors also have α and β subunits forming the pentamer. Immunoblots have shown that the rat γ1, γ2S, γ2L and γ3 subunits are peptides of 47, 45, 47 and 44 kDa respectively. Results also indicate that there are aging-related changes in the expression of the γ2S and γ2L subunits in various brain regions which suggest the existence of aging-related changes in the subunit composition of the GABAA receptors which in turn might lead to changes in receptor pharmacology. The results obtained with the various γ subunit isoforms are discussed in terms of the high molecular and binding heterogeneity of the native GABAA receptors in brain. Special issue dedicated to Dr. Kinya Kuriyama  相似文献   
5.
Abstract: The pentameric subunit composition of a large population (36%) of the cerebellar granule cell GABAA receptors that show diazepam (or clonazepam)-insensitive [3H]Ro 15-4513 binding has been determined by immunoprecipitation with subunit-specific antibodies. These receptors have α6, α1, γ2S, γ2L, and β2 or β3 subunits colocalizing in the same receptor complex.  相似文献   
6.
7.
Abstract: We have shown that the vertebrate neuropeptide N-acetylaspartylglutamate (NAAG) meets the criteria for a neurotransmitter, including function as a selective metabotropic glutamate receptor (mGluR) 3 agonist. Short-term treatment of cerebellar granule cells with NAAG (30 µM) results in the transient increase in content of GABAAα6 subunit mRNA. Using quantitative PCR, this increase was determined to be up to 170% of control values. Similar effects are seen following treatment with trans-1-aminocyclopentane-1,3-dicarboxylate and glutamate and are blocked by the mGluR antagonists (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine and (2S)-α-ethylglutamic acid. The effect is pertussis toxin-sensitive. The increase in α6 subunit mRNA level can be simulated by activation of other receptors negatively linked to adenylate cyclase activity, such as adenosine A1, α2-adrenergic, muscarinic, and GABAB receptors. Forskolin stimulation of cyclic AMP (cAMP) levels abolished the effect of NAAG. The change in α6 levels induced by 30 µM NAAG can be inhibited in a dose-dependent manner by simultaneous application of increasing doses of the β-adrenergic receptor agonist isoproterenol. The increase in α6 mRNA content is followed by a fourfold increase in α6 protein level 6 h posttreatment. Under voltage-clamped conditions, NAAG-treated granule cells demonstrate an increase in the furosemide-induced inhibition of GABA-gated currents in a concentration-dependent manner, indicating an increase in functional α6-containing GABAA receptors. These data support the hypothesis that NAAG, acting through mGluR3, regulates expression of the GABAAα6 subunit via a cAMP-mediated pathway and that cAMP-coupled receptors for other neurotransmitters may similarly influence GABAA receptor subunit composition.  相似文献   
8.
Human red blood cell membrane Ca2+-ATPase activity is stimulated in vitro by physiological concentrations of thyroid hormone. Quercetin, a flavonoid that inhibits several membrane-linked ATPases, suppressed thyroid hormone action on red cell Ca2+-ATPase activity and also interfered with binding of the hormone by red cell membranes. These effects of quercetin were dose-dependent over a range of concentrations (1-50 microM). In contrast, in the absence of thyroid hormone, quercetin at low concentrations stimulated Ca2+-ATPase activity and at 50 microM inhibited the enzyme. The effects of quercetin at low concentrations (1-10 microM), namely, stimulation of Ca2+-ATPase and inhibition of membrane-binding of thyroid hormone, mimic those of thyroid hormone and are consistent with the thyronine-like structure of quercetin. At high concentrations, quercetin is generally inhibitory of Ca2+-ATPase activity. Chalcone, fisetin, hesperetin and tangeretin are other flavonoids shown to reduce susceptibility of membrane Ca2+-ATPase to hormonal stimulation.  相似文献   
9.
D-Myo-inositol 1,4,5-trisphosphate (Ins[1,4-,5]P3) inhibits rat heart sarcolemmal Ca(2+)-ATPase activity (T. H. Kuo, Biochem. Biophys. Res. Commun. 152: 1111, 1988). We have studied the effect and mechanism of action of Ins(1,4,5)P3 and related inositol phosphates on human red cell membrane Ca(2+)-ATPase (EC 3.6.1.3) activity in vitro. At 10(-6) M, Ins(1,4,5)P3 and D-myo-inositol 4,5-bisphosphate (Ins[4,5]P2) inhibited human erythrocyte membrane Ca(2+)-ATPase activity in vitro by 42 and 31%, respectively. D-Myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 1-phosphate were not inhibitory. Enzyme inhibition by Ins(1,4,5)P3 was blocked by heparin. Exogenous purified calmodulin also stimulated red cell membrane Ca(2+)-ATPase activity; this stimulation was inhibited by Ins(1,4,5)P3. Ins(4,5)P2 and Ins(1,4,5)P3, but not Ins(1,4)P2, inhibited the binding of [125I]calmodulin to red cell membranes. Thus, specific inositol phosphates reduce plasma membrane Ca(2+)-ATPase activity and enhancement of the latter in vitro by purified calmodulin. The mechanism of these effects may in part relate to inhibition by inositol phosphates of binding of calmodulin to erythrocyte membranes.  相似文献   
10.
In vitro stimulation of human red blood cell Ca2+-ATPase by thyroid hormone   总被引:8,自引:0,他引:8  
Ca2+-ATPase activity in human erythrocyte ghosts previously washed to remove endogenous thyroid hormone is stimulated invitro by physiologic concentrations of thyroxine (T4) and triiodothyronine (T3). Two- to three-fold increases (P <0.005) in Ca2+-ATPase activity occurred after 60–120 minutes' exposure of membranes to iodothyronines at concentrations of T4 and T3 of 10?8 M to 10?12 M. T4 was more active than T3 and its activity did not depend upon prior conversion to T3. The Ca2+-ATPase effect represents an extranuclear action of thyroid hormone in a human cell model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号