首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   6篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   9篇
  2012年   9篇
  2011年   5篇
  2010年   10篇
  2009年   11篇
  2008年   12篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有150条查询结果,搜索用时 18 毫秒
1.
Apposition of cementum occurs in phases resulting in two types of layers with different optical and staining properties that can be observed by light microscopy. Narrow, dark staining incremental lines are separated by wider bands of pale staining cementum. The distance from one line to the next represents a yearly increment deposit of cementum in many mammals, and counting these lines has been used routinely to estimate the age of the animals. Incremental lines in cementum have also been observed in sections of human teeth, and the object of the present investigation was to examine a number of methods for preparing and staining them for counting. Longitudinal and transverse sections, either ground or decalcified, were cut from formalin fixed human dental roots, paraffin embedded or frozen, and stained using several techniques. The cementum was investigated using conventional light, fluorescence, polarized light, confocal laser scanning, interference contrast, phase contrast, and scanning electron microscopy. Incremental lines in the cementum could be observed in ground sections and, following decalcification, in both frozen and paraffin embedded sections. Toluidine blue, cresyl violet, hematoxylin, or periodic acid Schiff (PAS) stained incremental lines allowing differentiation by conventional light microscopy. Contrast was best using fluorescence microscopy and excitation by green light since the stained cemental bands, but not the incremental lines, fluoresced after staining with cresyl violet, PAS or hematoxylin and eosin. The results with other microscopic techniques were unsatisfactory. Since incremental lines are not destroyed by acids and stain differently than the remaining cementum, it is likely that they possess an organic structure which differs from the cementum. Incremental lines in human dental cementum could be observed best using decalcified sections stained with cresyl violet excited by green light.  相似文献   
2.
The surface structure and chemistry of symbiotic bacteria from the genus Rhizobium are probably important for the outcome of the infection of legume hosts. Exopolysaccharide, capsular polysaccharide, lipopolysaccharide and a low-molecular-weight polysaccharide were isolated from R. trifolii UTC 110-1 and R. leguminosarum UTC 114-5 and partially characterized. No or only minor differences in sugar composition could be found for the corresponding fractions from the two organisms. A general method to measure low activities of polymer-degrading enzymes was developed, and used to determine enzyme activities in root extracts of Trifolium repens L. cv. Lena and Pisum xativiini L. cv. Little Marvel against the isolated rhizobial polysaccharides. An enzyme preparation from T. repens partially degraded all polysaccharides isolated from its symbiont R. trifolii while polysaccharides from R. leguminosarum , symbiont of P. sativum , were degraded to a much lesser extent. Correspondingly, an enzyme preparation from P. sativum degraded all polysaccharides isolated from both its symbiont R. leguminosarum and its non-symbiont R. trifolii. The amount of symbiont polysaccharides degraded was larger than the amount of polysaccharides degraded from the non-symbiont R. trifolii.  相似文献   
3.
4.
We show that Enterococcus faecalis can utilize ascorbate for fermentative growth. In chemically defined media, growth yield was limited by the supply of amino acids, and the cells showed a much higher demand for amino acids than when they were grown on glucose.  相似文献   
5.
Stratospheric ozone depletion is most pronounced at high latitudes, and the concurring increased UV-B radiation might adversely affect plants from polar areas. However, vascular plants may protect themselves against UV-B radiation by UV-absorbing compounds located in the epidermis. In this 3-year study, epidermal UV-B (max 314 nm) and UV-A (max 366 nm) screening was assessed using a fluorescence method in 12 vascular species growing in their natural environment at Svalbard. The potential for acclimation to increased radiation was studied with artificially increased UV-B, simulating 11% ozone depletion. Open-top chambers simulated an increase in temperature of 2–3°C in addition to the UV-B manipulation. Adaxial epidermal UV-B transmittance varied between 1.6 and 11.4%. Artificially increased UV-B radiation and temperature did not consistently influence the epidermal UV-B transmittance in any of the measured species, suggesting that they may not have the potential to increase their epidermal screening, or that the screening is already high enough at the applied UV-B level. We propose that environmental factors other than UV-B radiation may influence epidermal UV-B screening.  相似文献   
6.
7.
We have dissected the molecular determinants involved in targeting the protein serine kinase PSKH1 to the endoplasmic reticulum (ER), the Golgi apparatus, and the plasma membrane (PM). Given this intracellular localization pattern, a potential role of PSKH1 in the secretory pathway was explored. The amino-terminal of PSKH1 revealed a striking similarity to the often acylated Src homology domain 4 (SH4)-harboring nonreceptor tyrosine kinases. Biochemical studies demonstrated that PSKH1 is myristoylated on glycine 2 and palmitoylated on cysteine 3. Dual amino-terminal acylation targets PSKH1 to Golgi as shown by colocalization with beta-COP and GM130, while nonpalmitoylated (myristoylated only) PSKH1 targets intracellular membranes colocalizing with protein disulphide isomerase (PDI, a marker for ER). Immunoelectron microscopy revealed that the dually acylated amino-terminal domain (in fusion with EGFP) was targeted to Golgi membranes as well as to the plasma membrane (PM), suggesting that the amino-terminal domain provides PSKH1 with membrane specificity dependent on its fatty acylation status. Subcellular fractionation by sucrose gradient analysis confirmed the impact of dual fatty acylation on endomembrane targeting, while cytosol and membrane fractioning revealed that myristoylation but not palmitoylation was required for general membrane association. A minimal region required for proper Golgi targeting of PSKH1 was identified within the first 29 amino acids. Expression of a PSKH1 mutant where the COOH-terminal kinase domain was swapped with green fluorescent protein and cysteine 3 was exchanged with serine resulted in disassembly of the Golgi apparatus as visualized by redistribution of beta-COP and GM130 to a diffuse cytoplasmic pattern, while leaving the tubulin skeleton intact. Our results suggest a structural and regulatory role of PSKH1 in maintenance of the Golgi apparatus, a key organelle within the secretory pathway.  相似文献   
8.
We examined chaperone association with subtypes of HLA-A68 differing at positions 116 and/or 70, and analyzed the surface expression of each A68 subtype. Our findings with A68 indicate that certain subtypes have inefficient association with the assembly complex and correspondingly high surface expression, dependent on the character of position 116. Specifically, poor association of A68 subtypes with the transporter associated with antigen processing correlated with a comparatively high level of W6/32(+) forms at the cell surface. This observation suggests that intracellular retention is a dominant function of the assembly complex and that natural differences in assembly complex interaction may dictate the level of surface expression of MHC class I molecules. We also found that position 116 was crucial for HLA-A68 subtype association with the assembly complex. Our data contrast with results we obtained previously with HLA-B7 in that an aspartic acid at position 116 abrogated chaperone association for HLA-A68, whereas it increased association for HLA-B7. In total, HLA-A molecules exhibit natural allele-specific distinctions in chaperone association that correlate with differences in cell surface expression and with the identity of amino acid position 116.  相似文献   
9.
A multiplex real-time PCR assay was developed to monitor the dynamics of the Picea abies-Heterobasidion annosum pathosystem. Tissue cultures and 32-year-old trees with low or high resistance to this pathogen were used as the host material. Probes and primers were based on a laccase gene for the pathogen and a polyubiquitin gene for the host. The real-time PCR procedure was compared to an ergosterol-based quantification method in a tissue culture experiment, and there was a strong correlation (product moment correlation coefficient, 0.908) between the data sets. The multiplex real-time PCR procedure had higher resolution and sensitivity during the early stages of colonization and also could be used to monitor the host. In the tissue culture experiment, host DNA was degraded more rapidly in the clone with low resistance than in the clone with high resistance. In the field experiment, the lesions elicited were not strictly proportional to the area colonized by the pathogen. Fungal colonization was more restricted and localized in the lesion in the clone with high resistance, whereas in the clone with low resistance, the fungus could be detected until the visible end of the lesion. Thus, the real-time PCR assay gives better resolution than does the traditionally used lesion length measurement when screening host clones for resistance.  相似文献   
10.
Engagement of the T-cell receptor (TCR) in human primary T cells activates a cyclic AMP (cAMP)-protein kinase A (PKA)-Csk inhibitory pathway that prevents full T-cell activation in the absence of a coreceptor stimulus. Here, we demonstrate that stimulation of CD28 leads to recruitment to lipid rafts of a β-arrestin/phosphodiesterase 4 (PDE4) complex that serves to degrade cAMP locally. Redistribution of the complex from the cytosol depends on Lck and phosphatidylinositol 3-kinase (PI3K) activity. Protein kinase B (PKB) interacts directly with β-arrestin to form part of the supramolecular complex together with sequestered PDE4. Translocation is mediated by the PKB plextrin homology (PH) domain, thus revealing a new role for PKB as an adaptor coupling PI3K and cAMP signaling. Functionally, PI3K activation and phosphatidylinositol-(3,4,5)-triphosphate (PIP3) production, leading to recruitment of the supramolecular PKB/β-arrestin/PDE4 complex to the membrane via the PKB PH domain, results in degradation of the TCR-induced cAMP pool located in lipid rafts, thereby allowing full T-cell activation to proceed.T-cell receptor (TCR) stimulation alone is insufficient for activation of T cells, and sustainable T-cell immune responses require a second signal in addition to the TCR-mediated signal. The second signal is typically elicited by ligands B7-1 or B7-2 on antigen-presenting cells engaging the coreceptor CD28 to prevent anergy and apoptosis and enhancing interleukin-2 (IL-2) production and clonal expansion (4). Although CD28 plays a central role in T-cell activation in vivo (5), relatively little is known about the molecular basis for the increased efficacy of T-cell activation upon TCR and CD28 costimulation. Involvement of Lck, Itk, phosphatidylinositol 3-kinase (PI3K), SLP-76, Vav-1, and phospholipase C-γ (PLC-γ) has, however, been reported (43). CD28-mediated signals are transmitted via a short intracellular stretch in the receptor containing a conserved YMNM motif (32). Phosphorylation of Tyr173 in this motif by Lck and Fyn following CD28 ligation is key to efficient signal transduction (41), generating a binding site for the SH2 domain of the p85 regulatory subunit of PI3K (37, 40). CD28 may also contribute to TCR-dependent PI3K activity without recruiting PI3K directly (18). Whether engagement of CD28 alone can also induce PI3K activity has been a matter of controversy. However, recent reports confirming phosphorylation of the protein kinase B (PKB) substrate glycogen synthase kinase 3 (GSK3) upon CD28 ligation has demonstrated that this is indeed the case (6, 15). In addition, CD28 can recruit growth factor receptor-bound protein 2 (Grb2), and such association of Grb2 occurs via the phosphorylated YMNM motif as well as via the C-terminal PXXP motif (22, 35). The PXXP motif also binds and regulates Src family kinases (SFKs) (21, 47), and knock-in mice mutated in this motif were recently reported to have impaired IL-2 secretion (16).Ligation of the TCR induces cyclic AMP (cAMP) production (27). However, the significance of this observation is still not fully understood, as it is well established that cAMP potently inhibits T-cell function and proliferation (2, 45, 46, 50). The spatiotemporal dynamics of the activation-induced cAMP gradient also are not completely appreciated. We have previously shown that cAMP is rapidly produced in lipid rafts following engagement of the TCR in primary T cells (3). This activates a pool of PKA type I targeted to rafts by association with the anchoring protein Ezrin, forming part of a supramolecular complex where Ezrin, EBP50, and PAG provide a scaffold that is able to coordinate PKA phosphorylation and activation of Csk, thereby inhibiting T-cell activation (44, 50). In addition, we have demonstrated that CD3/CD28 costimulation leads to recruitment of type 4 phosphodiesterase (PDE4) isoforms to rafts, resulting in degradation of the TCR-induced cAMP pool (3). Thus, we envisage that TCR-induced cAMP production constitutes a negative feedback loop capable of abrogating T-cell activation in the absence of a second signal. In order then to allow full T-cell activation to proceed, cAMP-mediated inhibition must be lifted. This appears to occur in the presence of a costimulus involving CD28 acting to trigger recruitment of PDE4 to lipid rafts, thereby degrading cAMP at this spatially critical location and resulting in an overriding positive feed-forward signal rather than the negative feedback loop activated from the TCR. In addition, a recent publication by Conche et al. has also found a possible stimulatory effect of cAMP, as the paper surprisingly showed that a transient cAMP increase shortly after TCR triggering may potentiate the calcium component of the TCR signaling. This could constitute a positive feed-forward in addition to the negative feedback signal by cAMP (12).Spatial organization and recruitment of mediators of specific pathways as outlined above are essential to ensure signaling specificity and amplification. Among the many protein scaffolds linking effector molecules into linear pathways, β-arrestins have been reported to confer cross talk with a growing list of molecules important in cellular trafficking and signal transduction, including Src family members and mitogen-activated protein (MAP) kinases (reviewed in reference 14). The arrestins were first identified as having a role in desensitization of G protein-coupled receptors (GPCRs) (9); later, they were discovered to be involved in receptor internalization by interacting with clathrin and AP-2, thereby bringing activated receptors to clathrin-coated pits for endocytosis (19, 26). A role for β-arrestin in the spatially localized degradation of cAMP by scaffolding PDE4 isoforms to the proximity of cAMP generation at the plasma membrane has also been suggested (3, 7, 30, 38).In the present study, we uncover a novel pathway that defines how T-cell costimulation elicits recruitment of PDE4 to lipid rafts to overcome cAMP-mediated inhibition of T-cell activation. This pathway is initiated by CD28 engagement leading to PI3K activation and phosphatidylinositol-(3,4,5)-triphosphate (PIP3) production and resulting in recruitment of a supramolecular complex of PKB/β-arrestin/PDE4 targeted to the plasma membrane due to sequestration via the PKB plextrin homology (PH) domain. Functionally, this pathway is essential for CD28 costimulation to strengthen and sustain T-cell immune responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号