首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   4篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   7篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1991年   2篇
  1989年   4篇
  1988年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
蚕豆植株叶片随茎节自上而下表现出明显的发育与衰老顺序,可作为衰老特征的是叶绿素和蛋白质含量明显下降。蚕豆叶中SOD活性主要定位于12 000× g离心后所得的上清液和叶绿体组分。衰老叶片的SOD总活性和叶绿体组分的相对活性都有所下降,SOD同工酶谱也发生了改变。O_2~ 产生速率随叶龄增大而稍上升;而MDA含量在叶片外观表现枯黄衰老征兆前就急剧上升。可能因为衰老叶片过氧化氢酶活性大幅度下降与SOD之间的不平衡,致使O_2~ 代谢中间产物累积而引起膜的损伤.  相似文献   
2.
3.
4.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   
5.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   
6.
The severe dystroglycanopathy known as a form of limb-girdle muscular dystrophy (LGMD2P) is an autosomal recessive disease caused by the point mutation T192M in α-dystroglycan. Functional expression analysis in vitro and in vivo indicated that the mutation was responsible for a decrease in posttranslational glycosylation of dystroglycan, eventually interfering with its extracellular-matrix receptor function and laminin binding in skeletal muscle and brain. The X-ray crystal structure of the missense variant T190M of the murine N-terminal domain of α-dystroglycan (50-313) has been determined, and showed an overall topology (Ig-like domain followed by a basket-shaped domain reminiscent of the small subunit ribosomal protein S6) very similar to that of the wild-type structure. The crystallographic analysis revealed a change of the conformation assumed by the highly flexible loop encompassing residues 159–180. Moreover, a solvent shell reorganization around Met190 affects the interaction between the B1–B5 anti-parallel strands forming part of the floor of the basket-shaped domain, with likely repercussions on the folding stability of the protein domain(s) and on the overall molecular flexibility. Chemical denaturation and limited proteolysis experiments point to a decreased stability of the T190M variant with respect to its wild-type counterpart. This mutation may render the entire L-shaped protein architecture less flexible. The overall reduced flexibility and stability may affect the functional properties of α-dystroglycan via negatively influencing its binding behavior to factors needed for dystroglycan maturation, and may lay the molecular basis of the T190M-driven primary dystroglycanopathy.  相似文献   
7.

Background  

Cellular responses to death-promoting stimuli typically proceed through a differentiated multistage process, involving a lag phase, extensive death, and potential adaptation. Deregulation of this chain of events is at the root of many diseases. Improper adaptation is particularly important because it allows cell sub-populations to survive even in the continuous presence of death conditions, which results, among others, in the eventual failure of many targeted anticancer therapies.  相似文献   
8.
9.

Background

Multiple congenital ocular anomalies (MCOA) syndrome is a hereditary congenital eye defect that was first described in Silver colored Rocky Mountain horses. The mutation causing this disease is located within a defined chromosomal interval, which also contains the gene and mutation that is associated with the Silver coat color (PMEL17, exon 11). Horses that are homozygous for the disease-causing allele have multiple defects (MCOA-phenotype), whilst the heterozygous horses predominantly have cysts of the iris, ciliary body or retina (Cyst-phenotype). It has been argued that these ocular defects are caused by a recent mutation that is restricted to horses that are related to the Rocky Mountain Horse breed. For that reason we have examined another horse breed, the Icelandic horse, which is historically quite divergent from Rocky Mountain horses.

Results

We examined 24 Icelandic horses and established that the MCOA syndrome is present in this breed. Four of these horses were categorised as having the MCOA-phenotype and were genotyped as being homozygous for the PMEL17 mutation. The most common clinical signs included megaloglobus, iris stromal hypoplasia, abnormal pectinate ligaments, iridociliary cysts occasionally extending into the peripheral retina and cataracts. The cysts and pectinate ligament abnormalities were observed in the temporal quadrant of the eyes. Fourteen horses were heterozygous for the PMEL17 mutation and were characterized as having the Cyst-phenotype with cysts and occasionally curvilinear streaks in the peripheral retina. Three additional horses were genotyped as PMEL17 heterozygotes, but in these horses we were unable to detect cysts or other forms of anomalies. One eye of a severely vision-impaired 18 month-old stallion, homozygous for the PMEL17 mutation was examined by light microscopy. Redundant duplication of non-pigmented ciliary body epithelium, sometimes forming cysts bulging into the posterior chamber and localized areas of atrophy in the peripheral retina were seen.

Conclusions

The MCOA syndrome is segregating with the PMEL17 mutation in the Icelandic Horse population. This needs to be taken into consideration in breeding decisions and highlights the fact that MCOA syndrome is present in a breed that are more ancient and not closely related to the Rocky Mountain Horse breed.  相似文献   
10.
In the globin family, similarities in the folding mechanism have been found among different mammalian apomyoglobins (apoMb). The best-characterized intermediate of sperm whale apoMb, called I(AGH), is mainly stabilized by nativelike contacts among the A, G, and H helices involving a cluster of hydrophobic residues that includes two conserved tryptophans. To verify the hypothesis of a common intermediate in the folding of all members of the globin family, we have extensively studied a site-directed mutant of the myoglobin from Aplysia limacina, distantly related to the mammalian counterpart, in which one of the two tryptophans in the A-G-H cluster [i.e., Trp(H8)130] has been mutated to tyrosine. The results presented here show that this mutation destabilizes both the native state and the acid intermediate I(A) but exerts little or no effect on the thermally stable core of an intermediate species (called I(T)) peculiar to Aplysia apomyoglobin. Dynamic quenching of Trp emission by acrylamide provides information on the accessibility of the chromophores at the native and the intermediate states of wild-type and mutant Aplysia apomyoglobin, consistent with the thermodynamics. Our results agree well with those obtained for the corresponding topological position of apomyoglobin from sperm whale and clearly show that the H8 position is involved in the stabilization of the main intermediate in both apoproteins. This residue thus plays a role which is evolutionarily conserved in the globin family from invertebrates to mammals; our results support the contention that the A-G-H cluster is important in the folding pathway of different globins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号