首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   11篇
  2024年   1篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
Murine/human chimeric gamma 1 and K Ig genes were cloned adjacent to the gene coding for methotrexate-resistant dihydrofolate reductase. These constructs were introduced into myeloma cells, and lines containing stably integrated genes were selected. The integrated Ig genes were then amplified by selection of the cells in increasing concentrations of methotrexate. The extent of gene amplification, mRNA accumulation, and production of Ig was studied in transfectomas containing introduced light chain genes, heavy chain genes, or both. When the light chain gene was introduced alone, it was expressed at low levels, but after selection with methotrexate, light chain expression was increased as much as 63-fold. In contrast, the transfected heavy chain genes were highly expressed, but production of the corresponding protein was increased a maximum of only fourfold by methotrexate treatment. Cellular toxicity of unassembled heavy chain monomer was not observed, even at amounts equivalent to 2% of total cellular protein. Cointroduction of the heavy and light chain constructs with subsequent amplification resulted in as much as 25-fold increase in secretion of intact antibody relative to unamplified cells. The results demonstrate that amplification of Ig genes can induce transfectomas to secrete antibody at nearly the rate of hybridomas.  相似文献   
2.
3.
The relative roles of the two structural aspects of nonenzymic glycation sites of hemoglobin A, namely the ease with which the amino groups could form the aldimine adducts and the propensity of the microenvironments of the respective aldimines to facilitate the Amadori rearrangement, in dictating the site selectivity of nonenzymic glycation with aldotriose has been investigated. The chemical reactivity of the amino groups of hemoglobin A forin vitro reductive glycation with aldotriose is distinct from that in the nonreductive mode. The reactivity of amino groups of hemoglobin A toward reductive glycation (i.e., propensity for aldimine formation) decreases in the order Val-1(), Val-1(), Lys-66(), Lys-61(), and Lys-16(). The overall reactivity of hemoglobin A toward nonreductive glycation decreased in the order Lys-16(), Val-1(), Lys-66(), Lys-82(), Lys-61(), and Val-1(). Since the aldimine is the common intermediate for both the reductive and nonreductive modification, the differential selectivity of protein for the two modes of glycation is clearly a reflection of the propensity of the microenvironments of nonenzymic glycation sites to facilitate the isomerization reaction (i.e., Amadori rearrangement). A semiquantitative estimate of this propensity of the microenvironment of the nonenzymic glycation sites has been obtained by comparing the nonreductive (nonenzymic) and reductive modification at individual glycation sites. The microenvironment of Lys-16() is very efficient in facilitating the rearrangement and the relative efficiency decreases in the order Lys-16(), Lys-82(), Lys-66(), Lys-61(), Val-1(), and Val-1(). The propensity of the microenvironment of Lys-16() to facilitate the Amadori rearrangement of the aldimine is about three orders of magnitude higher than that of Val-1() and is about 50 times higher than that of Val-1(). The extent of nonenzymic glycation at the individual sites is modulated by various factors, such as thepH, concentration of aldotriose, and the concentration of the protein. The nucleophiles—such as tris, glycine ethyl ester, and amino guanidine—inhibit the glycation by trapping the aldotriose. The nonenzymic glycation inhibitory power of nucleophile is directly related to its propensity to form aldimine. Thus, the extent of inhibition of nonenzymic glycation at a given site by a nucleophile directly reflects the relative role ofpK a of the site in dictating the glycation at that site. The nonenzymic glycation of an amino group of a protein is an additive/synergestic consequence of the propensity of the site to form aldimine adducts on one hand, and the propensity of its microenvironment to facilitate the isomerization of the aldimines to ketoamines on the other. The isomerization potential of microenvironment plays the dominant role in dictating the site specificity of the nonenzymic glycation of proteins.  相似文献   
4.
5.
Manufacturing cell line development involves transfection of therapeutic antibody genes into host cell lines and isolation of primary transfectomas that upon subcloning yield high expressing cell lines secreting the desired antibody. In an attempt to increase productivity of these cell lines, we set out to identify cellular genes whose expression level may affect antibody productivity. For this purpose, three different sets of mouse myeloma production cell lines expressing variable levels of three different therapeutic antibodies were subjected to microarray analysis using Murine GeneChip MG_U74Av2 arrays. A total of 456 genes were identified showing significant differential expression between at least one high expresser versus the control or its corresponding low expresser. Among these, 161 genes were common among at least one set of cell lines, and 26 genes were common among two or more sets of cell lines. Functional classification revealed that a majority of these genes have biological process function related to cell metabolism and cell growth. A subset of the 26 genes that were identified as commonly regulated among any two or all three sets of cell lines were selected (by several criteria) for quantitative PCR confirmation of the microarray methodology. The expression level of two genes, Secretory Leukocyte Protease Inhibitor (SLPI) and Cell Division Cycle-6 (Cdc6), correlated with antibody productivity in at least two sets of cell lines, suggesting that they can potentially be utilized as targets for engineering a superior transfection host cell line. Additionally, these genes may be used for screening murine myeloma production cell lines for superior productivity.  相似文献   
6.
The iron(III) complexes [Fe(pda)Cl(H(2)O)(2)] (1), [Fe(tpy)Cl(3)] (2), and [Fe(bbp)Cl(3)] (3), where H(2)pda is pyridine-2,6-dicarboxylic acid, tpy is 2,2':6,2'-terpyridine and bbp is 2,6-bis(benzimidazolyl)pyridine, have been isolated and studied as functional models for the intradiol-cleaving catechol dioxygenase enzymes. Mixed ligand complexes of H(2)pda with the bidentate ligands 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) have been also prepared and studied. All the complexes have been characterized using absorption spectral and electrochemical methods. The spectral changes in the catecholate adducts of the complexes generated in situ have been investigated. Upon interacting the complexes with catecholate anions a low energy catecholate to iron(III) charge transfer band appears, which is similar to that observed for enzyme-substrate complexes. All the complexes catalyze the oxidative intradiol cleavage of 3,5-di-tert-butylcatechol (H(2)dbc) in the presence of dioxygen. Interestingly, on replacing the pyridyl groups in 2 and the bulky benzimidazole groups in 3 by the carboxylate groups, the yields of the intradiol cleavage products of dioxygenation increases, 1 (50%)>2 (20%)>3 (10%). The higher intradiol yield for 1 has been ascribed to the meridional coordination of two carboxylate groups of pda(2-). In contrast to the trend in the intradiol cleavage yields, a tremendous decrease in the rate (200 times) is observed on replacing the two pyridyl moieties in 2 by two carboxylates as in 1 and a significant decrease in rate is observed on replacing the pyridyl moieties in 2 by strongly sigma-donating benzimidazole moieties as in 3. This is in conformity with the decrease in Lewis acidities of the iron(III) centers.  相似文献   
7.
8.
Chimeric immunoglobulin genes were constructed by fusing murine variable region exons to human constant region exons. The ultimate goal was to produce an antibody capable of escaping surveillance by the human immune system while retaining the tumor specificity of a murine monoclonal. The murine variable regions were isolated from the functionally expressed kappa and gamma 1 immunoglobulin genes of the murine hybridoma cell line B6.2, the secreted monoclonal antibody of which reacts with a surface antigen from human breast, lung, and colon carcinomas. The kappa and gamma 1 chain fusion genes were co-introduced into non-antibody producing murine myeloma cells by electroporation. Transfectants that produced murine/human chimeric antibody were obtained at high frequency as indicated by immunoblots probed with an antisera specific for human immunoglobulin. Enzyme-linked immunoabsorbent assay analysis demonstrated that this chimeric antibody was secreted from the myeloma cells and retained the ability to bind selectively to membrane prepared from human tumor cells. The chimeric immunoglobulin was also shown by indirect fluorescence microscopy to bind to intact human carcinoma cells with specificity expected of B6.2. The ability of chimeric antibody to recognize human tumor-associated antigen makes feasible a novel approach to cancer immunotherapy.  相似文献   
9.
The ADP-ribosyltransferase activity of the A1. subunit of cholera toxin is specifically inhibited by the dye cibacron blue 3GA. The presence of a ‘dinucleotide fold’ in the A1 subunit is thus established for the first time. This specific inhibition observed in vitro is successfully exploited in vivo for the inhibition of the diarrheal response brought out by the pure toxin in the rabbit ileal-loop test.  相似文献   
10.
A sialic acid-binding lectin, carcinoscorpin, has been purified to apparent homogeneity in 40% yield from the Indian horseshoe carb, Carcinoscorpius rotunda cauda. This glycoprotein lectin of molecular weight 420,000 was composed of two non-identical subunits of molecular weights 27,000 and 28,000 as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. The hemagglutination activity of the lectin was susceptible to guanidine-HCl; modification of tyrosyl and tryptophanyl residues also inhibited the activity although alkylation of the -SH group, reduction of disulfide bonds or modification of amino and carboxyl groups were without any effect. The monomeric form of the lectin produced by succinylation of native protein was inactive in binding to sialoglycoconjugates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号