首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4670篇
  免费   370篇
  2022年   29篇
  2021年   69篇
  2020年   53篇
  2019年   55篇
  2018年   105篇
  2017年   66篇
  2016年   109篇
  2015年   194篇
  2014年   192篇
  2013年   245篇
  2012年   287篇
  2011年   262篇
  2010年   157篇
  2009年   136篇
  2008年   194篇
  2007年   200篇
  2006年   205篇
  2005年   179篇
  2004年   172篇
  2003年   140篇
  2002年   153篇
  2001年   100篇
  2000年   93篇
  1999年   91篇
  1998年   67篇
  1997年   51篇
  1996年   49篇
  1995年   59篇
  1994年   50篇
  1993年   37篇
  1992年   67篇
  1991年   91篇
  1990年   68篇
  1989年   66篇
  1988年   73篇
  1987年   80篇
  1986年   61篇
  1985年   72篇
  1984年   61篇
  1983年   30篇
  1982年   41篇
  1981年   35篇
  1980年   29篇
  1979年   61篇
  1978年   38篇
  1977年   35篇
  1976年   31篇
  1975年   43篇
  1974年   35篇
  1973年   29篇
排序方式: 共有5040条查询结果,搜索用时 15 毫秒
1.
Insulin-like growth factor-1 (IGF-1) is a serum protein which unexpectedly folds to yield two stable tertiary structures with different disulphide connectivities; native IGF-1 [18-61,6-48,47-52] and IGF-1 swap [18-61,6-47, 48-52]. Here we demonstrate in detail the biological properties of recombinant human native IGF-1 and IGF-1 swap secreted from Saccharomyces cerevisiae. IGF-1 swap had a approximately 30 fold loss in affinity for the IGF-1 receptor overexpressed on BHK cells compared with native IGF-1.The parallel increase in dose required to induce negative cooperativity together with the parallel loss in mitogenicity in NIH 3T3 cells implies that disruption of the IGF-1 receptor binding interaction rather than restriction of a post-binding conformational change is responsible for the reduction in biological activity of IGF-1 swap. Interestingly, the affinity of IGF-1 swap for the insulin receptor was approximately 200 fold lower than that of native IGF-1 indicating that the binding surface complementary to the insulin receptor (or the ability to attain it) is disturbed to a greater extent than that to the IGF-1 receptor. A 1.0 ns high-temperature molecular dynamics study of the local energy landscape of IGF-1 swap resulted in uncoiling of the first A-region alpha-helix and a rearrangement in the relative orientation of the A- and B-regions. The model of IGF-1 swap is structurally homologous to the NMR structure of insulin swap and CD spectra consistent with the model are presented. However, in the model of IGF-1 swap the C-region has filled the space where the first A-region alpha-helix has uncoiled and this may be hindering interaction of Val44 with the second insulin receptor binding pocket.  相似文献   
2.
3.
A composite plot for depicting in two dimensions the conformation and the secondary structural features of protein residues has been developed. Instead of presenting the exact values of the main- and side-chain torsion angles (φ, psi and chi(1)), it indicates the region in the three-dimensional conformational space to which a residue belongs. Other structural aspects, like the presence of a cis peptide bond and disulfide linkages, are also displayed. The plot may be used to recognize patterns in the backbone and side-chain conformation along a polypeptide chain and to compare protein structures derived from X-ray crystallography, NMR spectroscopy or molecular modelling studies and also to highlight the effect of mutation on structure.  相似文献   
4.
A cDNA probe corresponding to the mRNA sequence for apolipoprotein E (apo E) was used to screen two independently-constructed human genomic libraries. Two recombinants (lambda E-2, and lambda E2-1), isolated using the apo E cDNA probe, also contain part or all of the apo CI gene. Hybridisation studies using both apo E and apo CI cDNA probes show that these two genes are in the same orientation and separated by 4 kb.  相似文献   
5.
6.
The structure of the tightly bound complex of the globular myosin head with F-actin is the key to understanding important details of the mechanism of how the actin-myosin motor functions. The current notion on this complex is based on the docking of known atomic structures of constituent proteins into low-resolution electron-density maps. The atomic structure of the complex was refined by the molecular mechanics method, which consists in minimizing the energy of molecular interaction and which makes it possible to optimize not only the relative position of protein backbones as rigid bodies, but also the position of side chains on the protein interface. The structure calculated using ICM-Pro software, on the one hand, is close to the model obtained using electron microscopy; on the other hand, it ensures the best calculated interaction energy and accounts for the results of mutagenesis experiments. On the basis of the structure obtained, we can suggest the molecular mechanisms underlying the actin-activated release of ATP hydrolysis products from myosin and the decrease in the affinity of myosin for actin upon binding of nucleotides.  相似文献   
7.
8.
9.
Bacillus thuringiensis NTB-1 isolated from soil samples in Korea produces ovoidal parasporal inclusions with proteins of approximately 24–40 kDa in size. Although serological study indicated that the isolate has a flagella (H) antigen identical with subsp. israelensis , it seemed to be non-insecticidal against Lepidoptera and Coleoptera as well as Diptera. To investigate the activity of non-insecticidal B. thuringiensis transformed with insecticidal crystal protein genes, cryIVD and cytA genes of B. thuringiensis subsp. morrisoni PG-14, highly toxic to mosquito larvae, were introduced into the isolate NTB-1. The expression of mosquitocidal crystal protein genes in NTB-1 was characterized by SDS–PAGE analysis and electron microscopy. The results showed that crystalline inclusions of host, CryIVD and CytA were stably expressed in the transformant. However, the mosquitocidal activity of transformant was similar to that of B. thuringiensis subsp. kurstaki Cry B harbouring cryIVD and cytA genes, demonstrating that a synergistic effect by an interaction of both introduced insecticidal and resident non-insecticidal crystal proteins was not observed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号