首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   10篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   6篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   7篇
  2014年   6篇
  2013年   12篇
  2012年   16篇
  2011年   22篇
  2010年   8篇
  2009年   8篇
  2008年   2篇
  2007年   7篇
  2006年   10篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1985年   1篇
  1984年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1966年   1篇
排序方式: 共有172条查询结果,搜索用时 31 毫秒
1.
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.  相似文献   
2.
Summary Chick 25-hydroxyvitamin D3-1-hydroxylase, a cytochrome P-450 monooxygenase with a molecular weight of 57 kDa, can be isolated as described by Mandel et al. (1990b). Under normal physiological circumstances, it occurs exclusively in kidney mitochondria. An isozyme of the 1-hydroxylase, known as the 24-hydroxylase, which uses the same substrate to yield an isomeric product, is also a cytochrome P-450 monooxygenase, has a molecular weight of 55 kDa, and likewise occurs in kidney mitochondria. The amino-terminal sequences of the first 10 residues of the two isozymes are 100% homologous. Monoclonal antibodies of the IgM class raised against the 1-hydroxylase, which quantitatively discriminate against other P-450 cytochromes of mitochondrial or microsomal origin, recognize and interact with the 24-hydroxylase as an antigen. In the present study we show that the intestine, which is the only non-renal tissue with demonstrable 24-hydroxylase activity, gives a positive peroxidase-antiperoxidase immunohistochemical reaction using the monoclonal antibodies against the 1-hydroxylase. The reactions revealed that the antigen in the kidney is restricted to the cortical proximal tubular cells while in the intestine, the antigen is localized in the enterocytes of the villi. In kidney medullary or intestinal crypt cells, or in liver, heart and lung tissues where 1-hydroxylase or 24-hydroxylase activity could not be detected using cell or tissue homogenates, the immunohistochemical reactions were also negative. Since it has been reported that chick embryonic intestine possesses 1-hydroxylase activity that is absent in the mature intestine, our results would suggest that the mature intestinal 24-hydroxylase represents a modified 1-hydroxylase as a consequence of developmentally imposed requirements regulating calcium homeostatic activity in this tissue. The difference in the molecular weights of the two enzymes would indicate either genomic processing prior to the translation of their respective mRNAs, or a post-translational processing of the larger 1-hydroxylase to the smaller 24-hydroxylase. The abbreviations used are: 25-OH-D3, 25-hydroxyvitamin D3; 1,25-(OH)2D3, 1,25-dihydroxyvitamin D3; 24,25-(OH)2D3, 24,25-dihydroxyvitamin D3, NADP, nicotinamide adenine dinucleotide phosphate  相似文献   
3.
Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.  相似文献   
4.
Effects in vitro of methyl parathion on some kinetic constants of succinic dehydrogenase (SDH) in hepatopancreas of freshwater mussel, L. marginalis were studied. Altered pH vs. specific activity curves for SDH demonstrated significant inhibition by methyl parathion in buffered acidic, neutral and alkaline ranges. At high pH ranges IC50 (12.5 microM) of methyl parathion did not cause 50% inhibition enzyme as it did at neutral and acidic pHs. Activation energies (delta E) were found to be increased suggesting decreased efficiency of enzyme in presence of methyl parathion. Non-competitive inhibition with respect to activation by succinate was indicated by decreased maximal velocity (V) without change in Michaelis Menten constant (Km). Pyridine-2-aldoxime (25 microM), pyridine-4-aldoxime (15 microM) and L-cysteine (40 microM) neutralized the inhibition of SDH by methyl parathion (12.5 microM). The kinetic data suggests that inhibition of SDH by methyl parathion was pH and temperature independent.  相似文献   
5.
Summary The increased downward mobility of phorate, quinalphos and carbofuran residues was detected in soil with increase in depth of soil column whereas aldicarb was found to remain localised mainly in 0–7.5 cm and 7.5–15.0 cm layers. Persistence of organophosphate insecticides was higher as compared to carbamates in all the soil layers. Residues of all the four insecticides got distributed in all parts of okra plant through uptake but accumulated in higher amounts in fruits only. Contribution No. 312/83 from I.I.H.R. Bangalore (India)  相似文献   
6.
Proline (Pro) plays a versatile role in cell metabolism and physiology. Pro and hydroxypro are major imino acids present in collagen, an important connective tissue protein, essential for wound healing, which is a primary response to tissue injury. This study explains the role of l-pro on cutaneous wound healing in rats when administered both topically and orally. Open excision wounds were made on the back of rats, and 200 μl (200 mg) of pro was administered topically and orally once daily to the experimental rats until the wounds healed completely. The control wounds were left untreated. Granulation tissues formed were removed after day 4 and 8 of post excision wounding, and biochemical parameters such as total protein, collagen, hexosamine, and uronic acid were estimated. Levels of enzymatic and non-enzymatic antioxidants such as catalase, superoxide dismutase, glutathione peroxidase, ascorbic acid, and reduced glutathione were evaluated along with lipid peroxides in the granulation tissues. Tensile strength and period of epithelialization were also measured. It was observed that the treated wounds healed very fast as evidenced by augmented rates of epithelialization and wound contraction, which was also confirmed by histological examinations. The results strappingly authenticate the beneficial effects of the topical administration of l-proline in the acceleration of wound healing than the oral administration and control.  相似文献   
7.

Objective

To investigate the effect of parthenolide on apoptosis and autophagy and to study the role of the PI3K/Akt signaling pathway in cervical cancer.

Results

Parthenolide inhibits HeLa cell viability in a dose dependent-manner and was confirmed by MTT assay. Parthenolide (6 µM) induces mitochondrial-mediated apoptosis and autophagy by activation of caspase-3, upregulation of Bax, Beclin-1, ATG5, ATG3 and down-regulation of Bcl-2 and mTOR. Parthenolide also inhibits PI3K and Akt expression through activation of PTEN expression. Moreover, parthenolide induces generation of reactive oxygen species that leads to the loss of mitochondrial membrane potential.

Conclusion

Parthenolide induces apoptosis and autophagy-mediated growth inhibition in HeLa cells by suppressing the PI3K/Akt signaling pathway and mitochondrial membrane depolarization and ROS generation. Parthenolide may be a potential therapeutic agent for the treatment of cervical cancer.
  相似文献   
8.
9.

Background

Many malaria vaccines are currently in development, although very few have been evaluated for efficacy in the field. Plasmodium falciparum multiple epitope (ME)– thrombospondin-related adhesion protein (TRAP) candidate vaccines are designed to potently induce effector T cells and so are a departure from earlier malaria vaccines evaluated in the field in terms of their mechanism of action. ME-TRAP vaccines encode a polyepitope string and the TRAP sporozoite antigen. Two vaccine vectors encoding ME-TRAP, plasmid DNA and modified vaccinia virus Ankara (MVA), when used sequentially in a prime-boost immunisation regime, induce high frequencies of effector T cells and partial protection, manifest as delay in time to parasitaemia, in a clinical challenge model.

Methods and Findings

A total of 372 Gambian men aged 15–45 y were randomised to receive either DNA ME-TRAP followed by MVA ME-TRAP or rabies vaccine (control). Of these men, 296 received three doses of vaccine timed to coincide with the beginning of the transmission season (141 in the DNA/MVA group and 155 in the rabies group) and were followed up. Volunteers were given sulphadoxine/pyrimethamine 2 wk before the final vaccination. Blood smears were collected weekly for 11 wk and whenever a volunteer developed symptoms compatible with malaria during the transmission season. The primary endpoint was time to first infection with asexual P. falciparum. Analysis was per protocol.DNA ME-TRAP and MVA ME-TRAP were safe and well-tolerated. Effector T cell responses to a non-vaccine strain of TRAP were 50-fold higher postvaccination in the malaria vaccine group than in the rabies vaccine group. Vaccine efficacy, adjusted for confounding factors, was 10.3% (95% confidence interval, −22% to +34%; p = 0.49). Incidence of malaria infection decreased with increasing age and was associated with ethnicity.

Conclusions

DNA/MVA heterologous prime-boost vaccination is safe and highly immunogenic for effector T cell induction in a malaria-endemic area. But despite having produced a substantial reduction in liver-stage parasites in challenge studies of non-immune volunteers, this first generation T cell–inducing vaccine was ineffective at reducing the natural infection rate in semi-immune African adults.  相似文献   
10.
The bgl promoter is silent in wild-type Escherichia coli under standard laboratory conditions, and as a result, cells exhibit a beta-glucoside-negative (Bgl-) phenotype. Silencing is brought about by negative elements that flank the promoter and include DNA structural elements and sequences that interact with the nucleoid-associated protein H-NS. Mutations that confer a Bgl+ phenotype arise spontaneously at a detectable frequency. Transposition of DNA insertion elements within the regulatory locus, bglR, constitutes the major class of activating mutations identified in laboratory cultures. The rpoS-encoded sigmaS, the stationary-phase sigma factor, is involved in both physiological as well as genetic changes that occur in the cell under stationary-state conditions. In an attempt to see if the rpoS status of the cell influences the nature of the mutations that activate the bgl promoter, we analyzed spontaneously arising Bgl+ mutants in rpoS+ and rpoS genetic backgrounds. We show that the spectrum of activating mutations in rpoS cells is different from that in rpoS+ cells. Unlike rpoS+ cells, where insertions in bglR are the predominant activating mutations, mutations in hns make up the majority in rpoS cells. The physiological significance of these differences is discussed in the context of survival of natural populations of E. coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号