首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   82篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   3篇
  2017年   7篇
  2016年   4篇
  2015年   6篇
  2014年   9篇
  2013年   12篇
  2012年   10篇
  2011年   17篇
  2010年   9篇
  2009年   8篇
  2008年   10篇
  2007年   21篇
  2006年   9篇
  2005年   6篇
  2004年   6篇
  2003年   5篇
  2002年   12篇
  2001年   7篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   10篇
  1991年   8篇
  1990年   6篇
  1989年   10篇
  1988年   6篇
  1987年   12篇
  1986年   6篇
  1985年   6篇
  1984年   7篇
  1983年   11篇
  1982年   7篇
  1981年   3篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   6篇
  1973年   4篇
  1972年   4篇
  1969年   3篇
  1968年   3篇
  1965年   2篇
排序方式: 共有352条查询结果,搜索用时 31 毫秒
1.
2.
Equilibrium dialysis results are presented for Ca(II) and Mg(II) ion binding to human and bovine prothrombin and fragment 1. Ca(II) ions bind cooperatively, Mg(II) does not.  相似文献   
3.
A novel class of mutations affecting the developmental expression of SerH cell surface antigen genes of Tetrahymena thermophila is described. Unlike previous categories of mutation, the four independently isolated mutations of this class act through the cytoplasm to affect SerH genes during macronuclear development. That is, macronuclei which develop under the influence of mutant cytoplasm do not subsequently express H, most likely because the developmental processing of SerH genes is affected. The cytoplasmic effect is specific for the SerH locus and is independent of which SerH allele is present. In place of H, hitherto unknown antigens are expressed. Expression of SerH can be rescued during development either by wild-type cytoplasm exchanged between conjugants or by the homozygous wild-type genotype. The mutations segregate independently of the SerH genes and identify one, possibly two, bistable genes. Possible models to explain these results are discussed.  相似文献   
4.
Methods used to estimate the (nonosmotic) bound water fraction (BWF) (i.e. apoplast water) of spinach (Spinacia oleracea L.) leaves were evaluated. Studies using three different methods of pressure/volume (P/V) curve construction all resulted in a similar calculation of BWF; approximately 40%. The theoretically derived BWF, and the water potential (Ψw)/relative water content relationship established from P/V curves were used to establish the relationship between protoplast (i.e. symplast) volume and Ψw. Another method of establishing the protoplast volume/Ψw relationship in spinach leaves was compared with the results from P/V curve experiments. This second technique involved the vacuum infiltration of solutions at a range of osmotic potentials into discs cut from spinach leaves. These solutions contained radioactively labeled H2O and sorbitol. This dual label infiltration technique allowed for simultaneous measurement of the total and apoplast volumes in leaf tissue; the difference yielded the protoplast volume. The dual label infiltration experiments and the P/V curve constructions both showed that below −1 megapascals, protoplast volume decreases sharply with decreasing water potential; with 50% reduction in protoplast volume occurring at −1.8 megapascals leaf water potential.  相似文献   
5.
The interaction of low water potential effects on photosynthesis, and leaf K+ levels in wheat (Triticum aestivum L.) plants was studied. Plants were grown at three K+ fertilization levels; 0.2, 2, and 6 millimolar. With well watered plants, 2 millimolar K+ supported maximal photosynthetic rates; 0.2 millimolar K+ was inhibitory, and 6 millimolar K+ was superoptimal (i.e. rates were no greater than at 2 millimolar K+). Photosynthesis was monitored at high (930 parts per million) and low (330 parts per million) external CO2 throughout a series of water stress cycles. Plants subjected to one stress cycle were considered nonacclimated; plants subjected to two successive cycles were considered acclimated during the second cycle. Sensitivity of photosynthesis to declining leaf water potential was affected by K+ status; 6 millimolar K+ plants were less sensitive, and 0.2 millimolar K+ plants were more sensitive than 2 millimolar K+ plants to declining water potential. This occurred with nonacclimated and acclimated plants at both high and low assay CO2. It was concluded that the K+ effect on photosynthesis under stress was not mediated by treatment effects on stomatal resistance. Differences between the K+ treatments were much less pronounced, however, when photosynthesis of nonacclimated and acclimated plants was plotted at a function of declining relative water content during the stress cycles. These results suggest that K+ effects on the relationship between relative water content and water potential in stressed plants was primarily responsible for the bulk of the K+-protective effect on photosynthesis in stressed plants. In vitro experiments with chloroplasts and protoplasts isolated from 2 millimolar K+ and 6 millimolar K+ plants indicated that upon dehydration, K+ efflux from the chloroplast stroma into the cytoplasm is less pronounced in 6 millimolar K+ protoplasts.  相似文献   
6.
Greenhouse and field experiments were performed to determine if increased leaf resistance induced by exogenous application of abscisic acid (ABA) could enhance the water status of transplanted bell pepper seedlings. Seedling survival and yield were also monitored in the field experiment. When seedlings were transplanted into either wet or dry potting mix in the greenhouse, ABA increased leaf resistance and leaf water potential. In the field, plots were irrigated either immediately after, or 1 day after transplanting. Under both treatments, ABA application resulted in increased leaf resistance and water potential, but seedling survival and yield were enhanced due to ABA only in plots which were irrigated 1 day after transplanting. It is concluded that antitranspirant application can reduce transplant shock and increase yield of bell pepper.  相似文献   
7.
Previous studies have suggested that chloroplast stromal volume reduction may mediate the inhibition of photosynthesis under water stress. In this study, the effects of spinach (Spinacia oleracea, var `Winter Bloomsdale') plant water deficits on chloroplast photosynthetic capacity, solute concentrations in chloroplasts, and chloroplast volume were studied. In situ (gas exchange) and in vitro measurements indicated that chloroplast photosynthetic capacity was maintained during initial leaf water potential (Ψw) and relative water content (RWC) decline. During the latter part of the stress period, photosynthesis dropped precipitously. Chloroplast stromal volume apparently remained constant during the initial period of decline in RWC, but as leaf Ψw reached −1.2 megapascals, stromal volume began to decline. The apparent maintenance of stromal volume over the initial RWC decline during a stress cycle suggested that chloroplasts are capable of osmotic adjustment in response to leaf water deficits. This hypothesis was confirmed by measuring chloroplast solute levels, which increased during stress. The results of these experiments suggest that stromal volume reduction in situ may be associated with loss of photosynthetic capacity and that one mechanism of photosynthetic acclimation to low Ψw may involve stromal volume maintenance.  相似文献   
8.
Chemical modification of the gamma-carboxyglutamyl (Gla) residues of bovine prothrombin fragment 1 using the formaldehyde-morpholine method in the presence of 100 Kappm Tb3+ ions at pH 5.0 provided a modified protein containing 3 gamma-methyleneglutamyl residues (gamma-MGlu) and 7 Gla residues (bovine 3-gamma-MGlu-fragment 1). The modified protein bound the same number of Ca2+ ions as the native protein (six to seven), exhibited 28Mg2+-binding properties identical to native fragment 1 (five Mg2+ ions bound), exhibited the metal ion-promoted quenching of the intrinsic fluorescence in a manner similar to the native protein, but did not bind to phosphatidylserine (PS)/phosphatidylcholine (PC) vesicles in the presence of Ca2+ ions. Modification of the bovine protein using [14C]formaldehyde-morpholine provided a 14C-labeled 3-gamma-MGlu-fragment 1 suitable for sequence analysis. Edman sequencing of the peptides released by a tryptic digest of the reduced and carboxymethylated bovine [14C]3-gamma-MGlu-fragment 1 indicated that Gla residues at positions 7, 8, and 33 had been converted to [14C]gamma-methyleneglutamyl residues. In addition Lys97 was found to contain a 14C label. Similar analysis of the human [14C]3-gamma-MGlu-fragment 1 indicated that Gla residues at positions 7 and 32 were major modification sites and that Gla residues at positions 6 and 14 were partially modified. Lysine 96 was also modified in the human protein. The incorporation of a 14C label at Lys97 in bovine 3-gamma-MGlu-fragment 1 protein is not responsible for the loss of Ca2+-promoted binding to PS/PC vesicles. We suggest that Gla residues 7, 8, and 33 are elements of the first Ca2+-binding site; occupancy of this site establishes the Ca2+-specific conformation which is essential for the Ca2+-promoted interaction of the bovine protein with PS/PC vesicles. These studies also suggest that the loss of Gla residues at positions 7 and 32 prevents the formation of the initial Ca2+-binding site in the human protein.  相似文献   
9.
Experiments were undertaken with field-grown potato (Solanum tuberosum L.) plants to test the hypothesis that altering leaf:tuber water potential gradients within a plant subjected to low soil moisture will allow greater Ca accumulation in tubers and reverse Ca deficiency-related tuber necrosis. Antitranspirant formulations containing a wax emulsion and a spreader/sticker surfactant increased leaf water potential during a drought episode, significantly reducing the potential gradient that develops between leaf and tuber during a period of stress. Increased leaf water potential in treated plants was associated with decreased leaf Ca and increased tuber Ca. Tuber necrosis was found to be reduced in treated plants, thus increasing tuber quality.  相似文献   
10.
Studies were undertaken to further characterize the spinach (Spinacea oleracea) chloroplast envelope system, which facilitates H+ movement into and out of the stroma, and, hence, modulates photosynthetic activity by regulating stromal pH. It was demonstrated that high envelope-bound Mg2+ causes stromal acidification and photosynthetic inhibition. High envelope-bound Mg2+ was also found to necessitate the activity of a digitoxinand oligomycin-sensitive ATPase for the maintenance of high stromal pH and photosynthesis in the illuminated chloroplast. In chloroplasts that had high envelope Mg2+ and inhibited envelope ATPase activity, 2-(diethylamino)-N-(2,6-dimethylphenyl)acetamide was found to raise stromal pH and stimulate photosynthesis. 2-(Diethylamino)-N-(2,6-dimethylphenyl)acetamide is an amine anesthetic that is known to act as a monovalent cation channel blocker in mammalian systems. We postulate that the system regulating cation and H+ fluxes across the plastid envelope includes a monovalent cation channel in the envelope, some degree of (envelope-bound Mg2+ modulated) H+ flux linked to monovalent cation antiport, and ATPase-dependent H+ efflux.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号