首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12269篇
  免费   1201篇
  国内免费   5篇
  2023年   80篇
  2022年   61篇
  2021年   389篇
  2020年   218篇
  2019年   284篇
  2018年   316篇
  2017年   252篇
  2016年   434篇
  2015年   774篇
  2014年   796篇
  2013年   808篇
  2012年   1132篇
  2011年   1029篇
  2010年   587篇
  2009年   434篇
  2008年   662篇
  2007年   684篇
  2006年   541篇
  2005年   483篇
  2004年   472篇
  2003年   393篇
  2002年   353篇
  2001年   125篇
  2000年   126篇
  1999年   118篇
  1998年   99篇
  1997年   55篇
  1996年   53篇
  1995年   43篇
  1994年   50篇
  1993年   52篇
  1992年   99篇
  1991年   69篇
  1990年   72篇
  1989年   63篇
  1988年   63篇
  1987年   59篇
  1986年   54篇
  1985年   74篇
  1984年   54篇
  1983年   62篇
  1982年   41篇
  1981年   48篇
  1980年   56篇
  1979年   58篇
  1978年   49篇
  1977年   41篇
  1976年   51篇
  1975年   41篇
  1974年   67篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Based on its proven anabolic effects on bone in osteoporosis patients, recombinant parathyroid hormone (PTH1-34) has been evaluated as a potential therapy for skeletal repair. In animals, the effect of PTH1-34 has been investigated in various skeletal repair models such as fractures, allografting, spinal arthrodesis and distraction osteogenesis. These studies have demonstrated that intermittent PTH1-34 treatment enhances and accelerates the skeletal repair process via a number of mechanisms, which include effects on mesenchymal stem cells, angiogenesis, chondrogenesis, bone formation and resorption. Furthermore, PTH1-34 has been shown to enhance bone repair in challenged animal models of aging, inflammatory arthritis and glucocorticoid-induced bone loss. This pre-clinical success has led to off-label clinical use and a number of case reports documenting PTH1-34 treatment of delayed-unions and non-unions have been published. Although a recently completed phase 2 clinical trial of PTH1-34 treatment of patients with radius fracture has failed to achieve its primary outcome, largely because of effective healing in the placebo group, several secondary outcomes are statistically significant, highlighting important issues concerning the appropriate patient population for PTH1-34 therapy in skeletal repair. Here, we review our current knowledge of the effects of PTH1-34 therapy for bone healing, enumerate several critical unresolved issues (e.g., appropriate dosing regimen and indications) and discuss the long-term potential of this drug as an adjuvant for endogenous tissue engineering.  相似文献   
2.
Proteins in the molecular weight range of 10 000–170 000 were separated by high performance gel permeation chromatography. Silica particles with 30 nm or 50 nm pores were derivatized with glycidoxy-propyltrimethoxysilane and used as support. The proteins were eluted with 50% formic acid. A protein fraction which induces endodermal and mesodermal tissues in amphibian gastrula ectoderm was purified by this method.  相似文献   
3.
Synaptogenesis has been extensively studied along with dendritic spine development in glutamatergic pyramidal neurons, however synapse development in cortical interneurons, which are largely aspiny, is comparatively less well understood. Dact1, one of 3 paralogous Dact (Dapper/Frodo) family members in mammals, is a scaffold protein implicated in both the Wnt/β-catenin and the Wnt/Planar Cell Polarity pathways. We show here that Dact1 is expressed in immature cortical interneurons. Although Dact1 is first expressed in interneuron precursors during proliferative and migratory stages, constitutive Dact1 mutant mice have no major defects in numbers or migration of these neurons. However, cultured cortical interneurons derived from these mice have reduced numbers of excitatory synapses on their dendrites. We selectively eliminated Dact1 from mouse cortical interneurons using a conditional knock-out strategy with a Dlx-I12b enhancer-Cre allele, and thereby demonstrate a cell-autonomous role for Dact1 during postsynaptic development. Confirming this cell-autonomous role, we show that synapse numbers in Dact1 deficient cortical interneurons are rescued by virally-mediated re-expression of Dact1 specifically targeted to these cells. Synapse numbers in these neurons are also rescued by similarly targeted expression of the Dact1 binding partner Dishevelled-1, and partially rescued by expression of Disrupted in Schizophrenia-1, a synaptic protein genetically implicated in susceptibility to several major mental illnesses. In sum, our results support a novel cell-autonomous postsynaptic role for Dact1, in cooperation with Dishevelled-1 and possibly Disrupted in Schizophrenia-1, in the formation of synapses on cortical interneuron dendrites.  相似文献   
4.
  1. Realized trophic niches of predators are often characterized along a one‐dimensional range in predator–prey body mass ratios. This prey range is constrained by an “energy limit” and a “subdue limit” toward small and large prey, respectively. Besides these body mass ratios, maximum speed is an additional key component in most predator–prey interactions.
  2. Here, we extend the concept of a one‐dimensional prey range to a two‐dimensional prey space by incorporating a hump‐shaped speed‐body mass relation. This new “speed limit” additionally constrains trophic niches of predators toward fast prey.
  3. To test this concept of two‐dimensional prey spaces for different hunting strategies (pursuit, group, and ambush predation), we synthesized data on 63 terrestrial mammalian predator–prey interactions, their body masses, and maximum speeds.
  4. We found that pursuit predators hunt smaller and slower prey, whereas group hunters focus on larger but mostly slower prey and ambushers are more flexible. Group hunters and ambushers have evolved different strategies to occupy a similar trophic niche that avoids competition with pursuit predators. Moreover, our concept suggests energetic optima of these hunting strategies along a body mass axis and thereby provides mechanistic explanations for why there are no small group hunters (referred to as “micro‐lions”) or mega‐carnivores (referred to as “mega‐cheetahs”).
  5. Our results demonstrate that advancing the concept of prey ranges to prey spaces by adding the new dimension of speed will foster a new and mechanistic understanding of predator trophic niches and improve our predictions of predator–prey interactions, food web structure, and ecosystem functions.
  相似文献   
5.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
6.
7.

Background  

Introductions of non-native tiger salamanders into the range of California tiger salamanders have provided a rare opportunity to study the early stages of secondary contact and hybridization. We produced first- and second-generation hybrid salamanders in the lab and measured viability among these early-generation hybrid crosses to determine the strength of the initial barrier to gene exchange. We also created contemporary-generation hybrids in the lab and evaluated the extent to which selection has affected fitness over approximately 20 generations of admixture. Additionally, we examined the inheritance of quantitative phenotypic variation to better understand how evolution has progressed since secondary contact.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号