首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26464篇
  免费   2497篇
  国内免费   1703篇
  2023年   282篇
  2022年   321篇
  2021年   981篇
  2020年   695篇
  2019年   832篇
  2018年   961篇
  2017年   767篇
  2016年   1023篇
  2015年   1542篇
  2014年   1783篇
  2013年   1877篇
  2012年   2606篇
  2011年   2478篇
  2010年   1404篇
  2009年   1134篇
  2008年   1667篇
  2007年   1573篇
  2006年   1400篇
  2005年   1173篇
  2004年   1093篇
  2003年   928篇
  2002年   792篇
  2001年   254篇
  2000年   242篇
  1999年   203篇
  1998年   202篇
  1997年   137篇
  1996年   131篇
  1995年   109篇
  1994年   101篇
  1993年   97篇
  1992年   124篇
  1991年   93篇
  1990年   102篇
  1989年   86篇
  1988年   66篇
  1987年   63篇
  1986年   60篇
  1985年   88篇
  1984年   97篇
  1983年   81篇
  1982年   82篇
  1981年   88篇
  1980年   65篇
  1979年   69篇
  1978年   70篇
  1977年   55篇
  1976年   64篇
  1975年   58篇
  1974年   56篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.

Background  

With the growing number of public repositories for high-throughput genomic data, it is of great interest to combine the results produced by independent research groups. Such a combination allows the identification of common genomic factors across multiple cancer types and provides new insights into the disease process. In the framework of the proportional hazards model, classical procedures, which consist of ranking genes according to the estimated hazard ratio or the p-value obtained from a test statistic of no association between survival and gene expression level, are not suitable for gene selection across multiple genomic datasets with different sample sizes. We propose a novel index for identifying genes with a common effect across heterogeneous genomic studies designed to remain stable whatever the sample size and which has a straightforward interpretation in terms of the percentage of separability between patients according to their survival times and gene expression measurements.  相似文献   
2.
Synaptogenesis has been extensively studied along with dendritic spine development in glutamatergic pyramidal neurons, however synapse development in cortical interneurons, which are largely aspiny, is comparatively less well understood. Dact1, one of 3 paralogous Dact (Dapper/Frodo) family members in mammals, is a scaffold protein implicated in both the Wnt/β-catenin and the Wnt/Planar Cell Polarity pathways. We show here that Dact1 is expressed in immature cortical interneurons. Although Dact1 is first expressed in interneuron precursors during proliferative and migratory stages, constitutive Dact1 mutant mice have no major defects in numbers or migration of these neurons. However, cultured cortical interneurons derived from these mice have reduced numbers of excitatory synapses on their dendrites. We selectively eliminated Dact1 from mouse cortical interneurons using a conditional knock-out strategy with a Dlx-I12b enhancer-Cre allele, and thereby demonstrate a cell-autonomous role for Dact1 during postsynaptic development. Confirming this cell-autonomous role, we show that synapse numbers in Dact1 deficient cortical interneurons are rescued by virally-mediated re-expression of Dact1 specifically targeted to these cells. Synapse numbers in these neurons are also rescued by similarly targeted expression of the Dact1 binding partner Dishevelled-1, and partially rescued by expression of Disrupted in Schizophrenia-1, a synaptic protein genetically implicated in susceptibility to several major mental illnesses. In sum, our results support a novel cell-autonomous postsynaptic role for Dact1, in cooperation with Dishevelled-1 and possibly Disrupted in Schizophrenia-1, in the formation of synapses on cortical interneuron dendrites.  相似文献   
3.
1. Species interactions in tightly bound ecological mutualisms often feature highly specialised species' roles in which competitive exclusion may preclude multi‐species coexistence. Among the 800 fig (Ficus) species, it was originally considered that each was pollinated by their own wasp (Agaonidae). However, recent investigations show that this ‘one‐to‐one’ rule often breaks down, as fig species regularly host multiple agaonids but in ways suggesting that competitive processes still mediate biodiversity outcomes. 2. A phenological survey was conducted of the fig–fig wasp pair, Ficus microcarpa and its associated pollinating wasp, alongside its sister species, the cheating wasp, in Xishuangbanna, China. 3. Reproductive output underwent extreme seasonal variation. Seed and pollinator production fell markedly during cooler, drier months, although high levels of fig production continued. However, this resource was predominantly utilised by the cheater species, which offers no pollination services. Pollinators and cheaters rarely co‐occur, suggesting that temporal coexistence is constrained by competition for access to figs. 4. The overall findings indicate periodic rearrangements of mutualism dynamics, probably resulting from a strongly seasonal environment. Sympatric co‐occurrence may result from a window of opportunity for a functionally divergent agaonid, potentially due to constraints on the main pollinator in adapting to variable year‐round conditions that prevent competitive exclusion.  相似文献   
4.
  1. Realized trophic niches of predators are often characterized along a one‐dimensional range in predator–prey body mass ratios. This prey range is constrained by an “energy limit” and a “subdue limit” toward small and large prey, respectively. Besides these body mass ratios, maximum speed is an additional key component in most predator–prey interactions.
  2. Here, we extend the concept of a one‐dimensional prey range to a two‐dimensional prey space by incorporating a hump‐shaped speed‐body mass relation. This new “speed limit” additionally constrains trophic niches of predators toward fast prey.
  3. To test this concept of two‐dimensional prey spaces for different hunting strategies (pursuit, group, and ambush predation), we synthesized data on 63 terrestrial mammalian predator–prey interactions, their body masses, and maximum speeds.
  4. We found that pursuit predators hunt smaller and slower prey, whereas group hunters focus on larger but mostly slower prey and ambushers are more flexible. Group hunters and ambushers have evolved different strategies to occupy a similar trophic niche that avoids competition with pursuit predators. Moreover, our concept suggests energetic optima of these hunting strategies along a body mass axis and thereby provides mechanistic explanations for why there are no small group hunters (referred to as “micro‐lions”) or mega‐carnivores (referred to as “mega‐cheetahs”).
  5. Our results demonstrate that advancing the concept of prey ranges to prey spaces by adding the new dimension of speed will foster a new and mechanistic understanding of predator trophic niches and improve our predictions of predator–prey interactions, food web structure, and ecosystem functions.
  相似文献   
5.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
6.

Background  

Introductions of non-native tiger salamanders into the range of California tiger salamanders have provided a rare opportunity to study the early stages of secondary contact and hybridization. We produced first- and second-generation hybrid salamanders in the lab and measured viability among these early-generation hybrid crosses to determine the strength of the initial barrier to gene exchange. We also created contemporary-generation hybrids in the lab and evaluated the extent to which selection has affected fitness over approximately 20 generations of admixture. Additionally, we examined the inheritance of quantitative phenotypic variation to better understand how evolution has progressed since secondary contact.  相似文献   
7.
This cross-sectional study evaluated the relationship of physical fitness, hormone replacement therapy (HRT), and hemostatic profiles at rest and after an acute bout of maximal exercise in 48 healthy postmenopausal women. Subjects were categorized by fitness and HRT user status into four groups: unfit nonusers, fit nonusers, unfit users, and fit users. Fibrinolytic variables tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) activity, and antigen and prothrombin fragment 1 + 2, a molecular marker of in vivo thrombin generation, were measured before and after maximal exercise. Fibrinogen was also measured at rest. Higher tPA and lower PAI-1 activities (P <0.05) were seen in HRT users and fit groups. tPA and PAI-1 antigens were lower in HRT and fit groups (P <0.05) but not after correction for body mass index. Prothrombin fragment 1 + 2 was lower in the fit groups regardless of HRT status (P <0.05). Fibrinogen was similar in all groups. Favorable hemostatic profiles were observed in physically fit compared with unfit women, especially in HRT nonusers. Thus fitness is more strongly related to these hemostatic risk factors compared with HRT since HRT did not affect these hemostatic variables in fit postmenopausal women.  相似文献   
8.
9.
The celiac disease (CD) is an inflammatory condition characterized by injury to the lining of the small-intestine on exposure to the gluten of wheat, barley and rye. The involvement of gluten in the CD syndrome has been studied in detail in bread wheat, where a set of “toxic” and “immunogenic” peptides has been defined. For wheat diploid species, information on CD epitopes is poor. In the present paper, we have adopted a genomic approach in order to understand the potential CD danger represented by storage proteins in diploid wheat and sequenced a sufficiently large number of cDNA clones related to storage protein genes of Triticum monococcum. Four bona fide toxic peptides and 13 immunogenic peptides were found. All the classes of storage proteins were shown to contain harmful sequences. The major conclusion is that einkorn has the full potential to induce the CD syndrome, as already evident for polyploid wheats. In addition, a complete overview of the storage protein gene arsenal in T. monococcum is provided, including a full-length HMW x-type sequence and two partial HMW y-type sequences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
10.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号