首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   2篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   10篇
  2010年   6篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1989年   4篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有90条查询结果,搜索用时 171 毫秒
1.
2.
蚕豆植株叶片随茎节自上而下表现出明显的发育与衰老顺序,可作为衰老特征的是叶绿素和蛋白质含量明显下降。蚕豆叶中SOD活性主要定位于12 000× g离心后所得的上清液和叶绿体组分。衰老叶片的SOD总活性和叶绿体组分的相对活性都有所下降,SOD同工酶谱也发生了改变。O_2~ 产生速率随叶龄增大而稍上升;而MDA含量在叶片外观表现枯黄衰老征兆前就急剧上升。可能因为衰老叶片过氧化氢酶活性大幅度下降与SOD之间的不平衡,致使O_2~ 代谢中间产物累积而引起膜的损伤.  相似文献   
3.
We investigated the effects of bradykinin (BK) on airway excitatory nonadrenergic noncholinergic (e-NANC) and cholinergic nerves in vitro. Neural responses were elicited by electrical field stimulation in guinea pig airways in vitro before and after the addition of BK (10(-10)-10(-7) M). Captopril (10(-5) M) and phosphoramidon (10(-6) M) were added to prevent degradation of BK, and all neural responses were measured in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M). BK potentiated e-NANC responses in bronchi in a concentration-dependent manner (10(-10)-10(-7) M) without changing concentration-response curves to exogenously applied substance P (10(-10)-10(-5) M). BK significantly potentiated e-NANC neural constrictor responses by 22 +/- 7% at 10(-8) M (mean +/- SE, n = 5, P < 0.05) and 32 +/- 7% at 10(-7) M (n = 8, P < 0.01), compared with changes in time-matched control tissues (7 +/- 2%, n = 8). The potentiation of e-NANC responses by BK was abolished by pretreatment with a specific B2-receptor antagonist, HOE 140 (10(-7) M). Cholinergic constrictor responses elicited to electrical field stimulation were not affected by the addition of BK (up to 10(-7) M). These results suggest that BK potentiates e-NANC bronchoconstrictor responses prejunctionally via a B2-receptor.  相似文献   
4.
Inhibitory nonadrenergic noncholinergic (i-NANC) nerves are the only neural bronchodilator pathway in human airways. Possible candidates for the neurotransmitter include vasoactive intestinal peptide (VIP) and nitric oxide (NO) and purines such as ATP. We have investigated the potential role of these neurotransmitters. Phosphoramidon (10(-5) M) significantly potentiated relaxations to low doses of VIP with no effect on i-NANC responses. Relaxations induced by VIp were abolished with alpha-chymotrypsin (2 U/ml), but i-NANC responses were unaffected. Reactive blue 2 had no effect on i-NANC neural responses, indicating that endogenous ATP was not involved. The NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME, 10(-4) M) produced a concentration-dependent inhibition of the i-NANC response, producing almost complete inhibition at every frequency studied (0.5-40 Hz), whereas L-NG-monomethyl arginine was effective only at low stimulation frequencies. The inhibitory effect of L-NAME was partially reversed by L- but not D-arginine, and D-NAME was without effect. These results suggest that in human tracheal segments the neural bronchodilator response is mediated by NO, and there is no functional evidence for implicating VIP in this response.  相似文献   
5.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   
6.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   
7.
Wool is a natural animal fiber commonly used in fabrics, but requires physical and chemical processing treatment for such applications. With the aim of developing new woollen textile products using environmentally friendly treatments, proteolytic bacteria were isolated from raw wool samples of Merino sheep and screened for wool-degrading activity. Two isolates were identified as Bacillus megaterium L4 and Bacillus thuringiensis L11 by 16S rRNA gene sequence analysis. Both isolates grew on a minimal medium using wool-fiber or wool-fabric as sole carbon and nitrogen sources. Bacterial growth was correlated with extracellular protease activity, and maximal protease production was in early stationary phase. The exoprotease produced by L11 was found to be a thermo-tolerant metalloprotease stabilized by calcium or magnesium, and had optimum activity at pH 7.0 and temperature at 40°C. During bacterial growth the wool-fiber lost weight, but it did not show changes in diameter. When wool-fabric was used instead of wool-fiber weight loss and non-shrinking was found. These are encouraging results for textile processing that should be useful for development of new textile products by direct microbial processing. A potential alternative that could be suggested from our study would be to treat wool with wool-degrading microorganisms in order to develop environmentally friendly processes.  相似文献   
8.
The relative roles of the endosomal TLR3/7/8 versus the intracellular RNA helicases RIG-I and MDA5 in viral infection is much debated. We investigated the roles of each pattern recognition receptor in rhinovirus infection using primary bronchial epithelial cells. TLR3 was constitutively expressed; however, RIG-I and MDA5 were inducible by 8-12 h following rhinovirus infection. Bronchial epithelial tissue from normal volunteers challenged with rhinovirus in vivo exhibited low levels of RIG-I and MDA5 that were increased at day 4 post infection. Inhibition of TLR3, RIG-I and MDA5 by siRNA reduced innate cytokine mRNA, and increased rhinovirus replication. Inhibition of TLR3 and TRIF using siRNA reduced rhinovirus induced RNA helicases. Furthermore, IFNAR1 deficient mice exhibited RIG-I and MDA5 induction early during RV1B infection in an interferon independent manner. Hence anti-viral defense within bronchial epithelium requires co-ordinated recognition of rhinovirus infection, initially via TLR3/TRIF and later via inducible RNA helicases.  相似文献   
9.

Background  

Cellular responses to death-promoting stimuli typically proceed through a differentiated multistage process, involving a lag phase, extensive death, and potential adaptation. Deregulation of this chain of events is at the root of many diseases. Improper adaptation is particularly important because it allows cell sub-populations to survive even in the continuous presence of death conditions, which results, among others, in the eventual failure of many targeted anticancer therapies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号