首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 140 毫秒
1
1.
The sequence of the central part (ORF2) of a Brazilian isolate of Southern bean mosaic virus (SBMVSP) is described. This ORF is 2888 nt long and together with the previously-sequenced 5' and 3' ends provides the complete nucleotide sequence of this virus isolate. The SBMVSP RNA encodes four overlapping open reading frames (ORF1, ORF2a, ORF2b, ORF4) and has a genome organization similar to that of the Cocksfoot mottle sobemovirus .  相似文献   
2.
Sugarcane is cultivated in tropical and subtropical regions where cold stress is not very common, but lower yields and reduced industrial quality of the plants are observed when it occurs. In our efforts to enhance cold tolerance in sugarcane, the gene encoding the enzyme isopentenyltransferase (ipt) under control of the cold inducible gene promoter AtCOR15a was transferred via biolistic transformation into sugarcane (Saccharum spp.) cv. RB855536. Semiquantitative RT-PCR using GAPDH encoding glyceraldehyde-3-phosphate dehydrogenase as the normalizer gene showed the increased expression of the ipt gene under cold stress. The detached leaves of genetically modified plants subjected to low temperatures showed visible reduction of leaf senescence in comparison to non-transgenic control plants. Induced overexpression of ipt gene also enhanced cold tolerance of non-acclimated whole plants. After being subjected to freezing temperature, leaf total chlorophyll contents of transgenic plants were up to 31 % higher than in wild type plants. Also, lower malondialdehyde content and electrolyte leakage indicated less damage induced by cold in transgenic plants. Thus, the expression of ipt driven by the stress inducible COR15a promoter did not affect plant growth while providing a greater tolerance to cold stress.  相似文献   
3.
The present work describes the identification and characterization of a potyvirus isolated from siratro (Macroptilium atropurpureum Urb.) in the north‐west region of the State of São Paulo, Brazil. The virus was transmitted by mechanical inoculation. Its host range was restricted mainly to members of the Fabaceae. A cDNA fragment of about 930 bp was amplified by RT/PCR, cloned and sequenced. The fragment, which included the coat protein gene, had amino acid identity percentages between 88 and 98% with isolates of Bean common mosaic virus (BCMV). Phylogenetic analysis grouped the siratro potyvirus and BCMV isolates in 99% of the replicates, including Azuki mosaic virus, Dendrobium mosaic virus, Blackeye cowpea mosaic virus and Peanut stripe virus, which have been classified as BCMV strains. This is the first citation on the presence of BCMV in siratro plants in Brazil.  相似文献   
4.
High salinity interferes in sugarcane growth and development, affecting not only crop yield but also reducing sucrose concentration in culms. Sugarcane plants submitted to salt stress can accumulate compatible solutes, such as proline, which may counteract the effects of salt accumulation in the vacuole and scavenge reactive oxygen species. The objective of this study was to evaluate the response to salt stress of sugarcane plants transformed with the Vigna aconitifolia P5CS gene, which encodes ?1-pyrroline-5-carboxylate synthetase, under the control of a stress-induced promoter AIPC (ABA-inducible promoter complex). For this, 4-month-old clonally multiplied sugarcane plants from two transformation events were irrigated every 2 days with 1/10 Hoagland’s solution supplemented with 100, 150 and 200 NaCl, progressively, during 28 days. Transgenic lines showed increased transgene expression in 3.75-fold when compared with the control plants after 9 days of irrigation with saline water, which can explain the higher proline concentration found in these plants. At the end of the experiment (day 28), the transgenic lines accumulated up to 25 % higher amounts of proline when compared with non-transformed control plants. Stress response in transgenic plants was also accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation in leaves, lower Na+ accumulation in leaves and maintenance of photochemical efficiency of PSII. Thus, proline contributed to the protection of the photosynthetic apparatus and the prevention of oxidative damage in transgenic sugarcane under salt stress.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号