首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1982年   2篇
排序方式: 共有41条查询结果,搜索用时 671 毫秒
1.
S Beharry  P D Bragg 《Biochemistry》1992,31(46):11472-11476
Escherichia coli F1-ATPase contained 3 mol of tightly-bound adenine nucleotide/mol enzyme. A further 3 mol could be loaded by incubation of the enzyme with ATP. The unloaded enzyme was designated as a F1[2,1] type on the basis of the ability of GTP to displace 1 mol of adenine nucleotide/mol of F1 [Kironde, F.A.S., & Cross, R.L. (1986) J. Biol. Chem. 261, 12544-12549]. The loaded enzyme was designated F1[3,3] since GTP could displace 3 of the 6 mol of bound adenine nucleotide/mol of F1. Incubation of F1[2,1], F1[2,0], and F1[3,0] with phosphate in the presence of 30% (v/v) dimethyl sulfoxide led to the synthesis of ATP from endogenous bound ADP. Hydrolysis of newly synthesized ATP occurred on transfer of the F1 from 30% (v/v) dimethyl sulfoxide to an entirely aqueous medium. Thus, synthesis and hydrolysis of ATP can occur at GTP-nonchaseable adenine nucleotide binding sites, and these sites in dimethyl sulfoxide are not necessarily equivalent to noncatalytic sites.  相似文献   
2.
3.
To examine the biochemical regulation of morphine sulfate (MS) on prostanoid synthesis, conscious newborn piglets received a bolus dose of 100 microg/kg followed by a continuous infusion dose of 100 microg/kg/h. The control group received equivalent volume bolus and continuous infusion of 5% dextrose. Blood samples were drawn from the femoral artery and sagittal sinus vein before, during and after infusion for measurement of prostanoids. The expression of mRNAs encoding cyclooxygenases (COX)-1 and -2 in the brainstem, thalamus, cortex, and cerebellum of the newborn piglets were also examined. Systemic PGE2 levels declined substantially during and post MS infusion (p < 0.01), whereas sagittal sinus vein PGE2 levels increased following the bolus dose (p < 0.01) and at 4 h of continuous infusion (p < 0.01). MS infusion did not affect systemic 6-ketoPGF1alpha levels, however, in the cerebral circulation 6-ketoPGF1alpha levels increased 146% (p < 0.01) following the bolus dose and remained elevated throughout the infusion and post infusion times. Systemic TxB2 levels increased transiently at 4 h (p < 0.01) and sagittal sinus vein TxB2 increased at 0.5 and 1 h (p < 0.01) during continuous infusion. RT-PCR assays revealed a 1.5- (p < 0.001) to 4-fold (p < 0.001) increased expression of COX-1 mRNA in the MS-infused brain samples. In contrast, no differences in COX-2 mRNA were detected between the groups. These data imply that MS may have significant effects on prostanoid synthesis in the newborn. The data further show that the MS-induced prostanoid responses appear to be mediated via COX-1.  相似文献   
4.
The Rieske dioxygenase, anthranilate 1,2-dioxygenase, catalyzes the 1,2-dihydroxylation of anthranilate (2-aminobenzoate). As in all characterized Rieske dioxygenases, the catalytic conversion to the diol occurs within the dioxygenase component, AntAB, at a mononuclear iron site which accepts electrons from a proximal Rieske [2Fe-2S] center. In the related naphthalene dioxygenase (NDO), a conserved aspartate residue lies between the mononuclear and Rieske iron centers, and is hydrogen-bonded to a histidine ligand of the Rieske center. Engineered substitutions of this aspartate residue led to complete inactivation, which was proposed to arise from elimination of a productive intersite electron transfer pathway [Parales, R. E., Parales, J. V., and Gibson, D. T. (1999) J. Bacteriol. 181, 1831-1837]. Substitutions of the corresponding aspartate, D218, in AntAB with alanine, asparagine, or glutamate also resulted in enzymes that were completely inactive over a wide pH range despite retention of the hexameric quaternary structure and iron center occupancy. The Rieske center reduction potential of this variant was measured to be approximately 100 mV more negative than that for the wild-type enzyme at neutral pH. The wild-type AntAB became completely inactive at pH 9 and exhibited an altered Rieske center absorption spectrum which resembled that of the D218 variants at neutral pH. These results support a role for this aspartate in maintaining the protonated state and reduction potential of the Rieske center. Both the wild-type and D218A variant AntABs exhibited substrate-dependent rapid phases of Rieske center oxidations in stopped-flow time courses. This observation does not support a role for this aspartate in a facile intersite electron transfer pathway or in productive substrate gating of the Rieske center reduction potential. However, since the single turnovers resulted in anthranilate dihydroxylation by the wild-type enzyme but not by the D218A variant, this aspartate must also play a crucial role in substrate dihydroxylation at or near the mononuclear iron site.  相似文献   
5.
Beef-heart mitochondrial F1F0-ATP synthase contained six molecules of bound inorganic phosphate (Pi). This phosphate exchanged completely with exogenous 32Pi when the enzyme was exposed to 30% (v/v) dimethyl sulfoxide (DMSO) and then returned to a DMSO-free buffer (Beharry and Bragg 2001). Only two molecules were replaced by 32Pi when the enzyme was not pretreated with DMSO. These two molecules of 32Pi were not displaced from the enzyme by the treatment with 1 mM ATP. Similarly, two molecules of bound 32Pi remained on the DMSO-pretreated enzyme following addition of ATP, that is, four molecules of 32Pi were displaced by ATP. The ATP-resistant 32Pi was removed from the enzyme by pyrophosphate. It is proposed that these molecules of 32Pi are bound at an unfilled adenine nucleotide-binding noncatalytic site on the enzyme. Brief exposure of the enzyme loaded with two molecules of 32Pi to DMSO, followed by removal of the DMSO, resulted in the loss of the bound 32Pi and in the formation of two molecules of bound ATP from exogenous ADP. A third catalytic site on the enzyme was occupied by ATP, which could undergo a Pi ATP exchange reaction with bound Pi The presence of two catalytic sites containing bound Pi is consistent with the X-ray crystallographic structure of F1 (Bianchet, et al., 1998). Thus, five of the six molecules of bound Pi were accounted for. Three molecules of bound Pi were at catalytic sites and participated in ATP synthesis or Pi ATP exchange. Two other molecules of bound Pi were present at a noncatalytic adenine nucleotide-binding site. The location and role of the remaining molecule of bound Pi remains to be established. We were unable to demonstrate, using chemical modification of sulfhydryl groups by iodoacetic acid, any gross difference in the conformation of F1F0 in DMSO-containing compared with DMSO-free buffers.  相似文献   
6.
We examined and compared the in vitro effects of misoprostol (synthetic prostaglandin E1 (PGE1) analogue) on prostaglandin E2 (PGE2) secretion and EP3 receptor mRNA expression in the pregnant rat myometrium and cervix at 19 days gestation. Myometrial and cervical tissue samples were exposed to media with or without misoprostol (50 or 100 pg/ml) and incubated for 15 and 30 min, and 1, 3, 6, 12, and 24 h. Media and tissue samples were collected for quantification of PGE2 and mRNA expression of rEP3alpha and rEP3beta receptor, respectively. PGE2 secretion increased (P < or = 0.05) in the myometrium exposed to 50 and 100 pg/ml misoprostol. Cervical PGE2 secretion increased following exposure to the 100 pg/ml dose only. In the myometrium, 50 and 100 pg/ml misoprostol induced elevations in rEP3alpha and rEP3beta receptor mRNA expression. rEP3alpha and rEP3beta receptor mRNA expression in the cervix was not different from controls. These data demonstrate that the EP3 receptor is differentially expressed in the myometrium and cervix in response to misoprostol. This may account for the ability of misoprostol to stimulate the myometrium when administered for cervical ripening.  相似文献   
7.
ABCA4, a member of the family of ATP binding cassette (ABC) proteins found in rod and cone photoreceptors, has been implicated in the transport of retinoid compounds across the outer segment disk membrane following the photoactivation of rhodopsin. Mutations in the ABCA4 gene are responsible for Stargardt macular dystrophy and related retinal degenerative diseases that cause a loss in vision. To identify the retinoid substrate that interacts with ABCA4, we have isolated ABCA4 from rod outer segment disk membranes on an immunoaffinity matrix and analyzed retinoid compounds that bind to ABCA4 using high performance liquid chromatography and radiolabeling methods. When all-trans-retinal was added to ABCA4 in the presence of phosphatidylethanolamine, approximately 0.9 mol of N-retinylidene-phosphatidylethanolamine and 0.3 mol of all-trans-retinal were bound per mol of ABCA4 with an apparent K(d) of 2-5 microm. ATP and GTP released these retinoids from ABCA4, whereas ADP, GDP, and nonhydrolyzable derivatives, adenosine 5'-(beta,gamma-imido)triphosphate and guanosine 5'-(beta,gamma-imido)triphosphate, were ineffective. One mole of N-retinyl-phosphatidylethanolamine, the reduced form of N-retinylidene-phosphatidylethanolamine, bound per mol of ABCA4, whereas 0.3 mol of all-trans-retinal were bound in the absence of phosphatidylethanolamine. No binding of all-trans-retinol to ABCA4 was observed. Our results indicate that ABCA4 preferentially binds N-retinylidene-phosphatidylethanolamine with high affinity in the absence of ATP. Our studies further suggest that ATP binding and hydrolysis induces a protein conformational change that causes N-retinylidene-phosphatidylethanolamine to dissociate from ABCA4.  相似文献   
8.
The Pim-1 protein kinase plays an important role in regulating both cell growth and survival and enhancing transformation by multiple oncogenes. The ability of Pim-1 to regulate cell growth is mediated, in part, by the capacity of this protein kinase to control the levels of the p27, a protein that is a critical regulator of cyclin-dependent kinases that mediate cell cycle progression. To understand how Pim-1 is capable of regulating p27 protein levels, we focused our attention on the SCFSkp2 ubiquitin ligase complex that controls the rate of degradation of this protein. We found that expression of Pim-1 increases the level of Skp2 through direct binding and phosphorylation of multiple sites on this protein. Along with known Skp2 phosphorylation sites including Ser64 and Ser72, we have identified Thr417 as a unique Pim-1 phosphorylation target. Phosphorylation of Thr417 controls the stability of Skp2 and its ability to degrade p27. Additionally, we found that Pim-1 regulates the anaphase-promoting complex or cyclosome (APC/C complex) that mediates the ubiquitination of Skp2. Pim-1 phosphorylates Cdh1 and impairs binding of this protein to another APC/C complex member, CDC27. These modifications inhibit Skp2 from degradation. Marked increases in Skp2 caused by these mechanisms lower cellular p27 levels. Consistent with these observations, we show that Pim-1 is able to cooperate with Skp2 to signal S phase entry. Our data reveal a novel Pim-1 kinase-dependent signaling pathway that plays a crucial role in cell cycle regulation.  相似文献   
9.
Dimethylsulfoxide (Me2SO; 30%, v/v) promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1 ATPase. The effects of this solvent on the adenine nucleotide binding properties of beef-heart mitochondrial F1 ATPase were examined. The ATP analog adenylyl-5'-imidodiphosphate bound to F1 at 1.9 and 1.0 sites in aqueous and Me2SO systems, respectively, with a KD value of 2.2 microM. Lower affinity sites were present also. Binding of ATP or adenylyl-5'-imidodiphosphate at levels near equimolar with the enzyme occurred to a greater extent in the absence of Me2SO. Addition of ATP to the nucleotide-loaded enzyme resulted in exchange of about one-half of the bound ATP. This occurred only in an entirely aqueous medium. ATP bound in Me2SO medium was not released by exogenous ATP. Comparison of the effect of different concentrations of Me2SO on ADP binding to F1 and ATP synthesis by the enzyme showed that binding of ADP was diminished by concentrations of Me2SO lower than those required to support ATP synthesis. However, one site could still be filled by ADP at concentrations of Me2SO optimal for ATP synthesis. This site is probably a noncatalytic site, since the nucleotide bound there was not converted to ATP in 30% Me2SO. The ATP synthesized by F1 in Me2SO originated from endogenous bound ADP. We conclude that 30% Me2SO affects the adenine nucleotide binding properties of the enzyme. The role of this in the promotion of the formation of ATP from ADP and phosphate is discussed.  相似文献   
10.
Mitochondrial DNAs of six morphologically different Phytophthora species were digested with 15 restriction enzymes. The numbers of restriction fragments obtained differed considerably from those theoretically expected for random base distribution. Enzymes with relatively many G and C in their recognition sequences produced significantly larger numbers of fragments. Moreover, fragments generated by most of these enzymes were more often shared by two or more species than those from enzymes with more A and T in their recognition sequence. It is concluded that base distribution in mitochondrial DNA of Phytophthora is heterogeneous,AT-rich stretches occurring scattered over the mitochondrial genome and GC-rich regions present in conserved sequences, presumably genes. A practical consequence for taxonomic RFLP studies is that optimal enzymes can be selected, depending on the desired level of resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号