首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1991年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
排序方式: 共有62条查询结果,搜索用时 171 毫秒
1.
In meso-eutrophic Lake Constance (Germany-Austria-Switzerland),phytoplankton bioraass, pigments and water transparency, aswell as primary productivity, have been followed between 1980and 1989. During this period, municipal phosphorus loading declinedsignificantly. Since 1981, soluble reactive phosphorus (SRP)concentrations during deep lake mixing have decreased from 3.0to currently 1 6 mmol m3 at a rate of 7% year1.Nitrate concentrations, by contrast, continued to rise. Duringthe period of maximum phosphorus loading, flushing through theoutlet and sedimentation were about equally important sinksof phosphorus from the euphotic zone. Recently, however, sedimentationand subsequent burial of P in the bottom deposits contributedabout three-quarters to the overall P-losses from the systemMain reasons for this shift are unchanged settling fluxes ofphosphorus out of the euphotic zone and decreasing concentrationsof total phosphorus in the water. Only during spring, do concentrations of soluble reactive phosphoruswithin the euphotic zone decrease in proportion to the formationof particulate organic matter. Later during the season, euphoticSRP concentrations continue to be low but are no longer matchedby high plankton biomass because phosphorus is efficiently removedby settling of particles In spite of the observed dramatic decreasein phosphorus loading since 1980, chlorophyll concentrationsand water transparency, as well as annual phytoplankton productivity(300 g C m2), have not shown a consistent downward trend.However, the intensity of phosphorus regeneration within theeuphoric zone, which can be used as a measure of the degreeof nutrient limitation, is likely to have increased significantlyThe most probable explanation for the insensitivity of importanttrophic state indicators to reduced nutrient loading is that,in Lake Constance, biomass accumulation to a greater extentis controlled by losses, mainly grazing by zooplankton and sedimentation,than by primary resources. This is concluded from the observationthat phytoplankton biomass always falls far short of the nutrient-dependentcarrying capacity of the system.  相似文献   
2.
Summary During October/November 1983 photosynthetic responses of natural phytoplankton from the Scotia Sea and Bransfield strait to light and temperature were examined in incubators. Both assimilation numbers at saturating light levels and the slopes of the light-limited portions of the photosynthesis versus irradiance curves were smaller than in algae from lower latitudes. However, both parameters increased significantly with rising temperatures. Light-saturated photosynthesis on the average exhibited a Q10-value of ca. 4.2 between-1.5°C and +2°C. Light-limited photosynthesis between-1.5°C and +5°C rose at a rate corresponding to a Q10-value of roughly 2.6. Above +5°C, temperature enhancement of both light-saturated and light-limited photosynthetic rates was minimal or absent. Our results suggest that under extremely low temperatures light-limited photosynthetic rates become temperature-dependent due to changes in maximum quantum yields.  相似文献   
3.
Quantification of net nitrogen mineralization (NNM) in soils is indispensable in order to optimize N fertilization of crops. Two long-term laboratory incubation methods were applied to determine rates of net nitrogen mineralization (rNNM) of soils from two sites of arable land (sandy loam soil, silty loam soil) at four temperature levels (2°C, 8°C, 14°C, 21°C). Since variability within replicates was small, the modified 12-week incubation method of Stanford and Smith (1972) using disturbed soils allowed to establish reliable Arrhenius functions with reasonable expenditure. The fit of the functions derived from the 5-month incubation of 23 undisturbed soil columns (4420 cm3) was worse. This was caused by greater variability and less differentiation between temperature levels. Results of both experiments could be described best by zero-order kinetics. Mean mineralization rates of disturbed samples were approximately twice as high than those of undisturbed samples. The suitability of both methods for the prediction of NNM at site conditions is discussed. Actual respiration (AR) at incubation temperatures and substrate induced respiration (SIR) were measured at the end of the incubation of undisturbed soil columns. The results presented reveal that soil microbial communities develop in a different manner during long-term incubation at different temperatures. This behavior offends the underlying assumption that soil microbes remain in steady-state during incubation and that rising rates are physiological reactions to temperature enhancement. Therefore soil microbial biomass (SMB) dynamics during the experiment has to be accounted for when rates of NNM and Arrhenius functions are established. R Merck Section editor  相似文献   
4.
In this review we discuss the position of electrical neuromodulation as a safe and reversible adjuvant therapy for treatment of patients with chronic cardiac diseases who have become refractory to conventional strategies. In patients with chronic refractory angina, electrical neuromodulation, independent of the applied modality, has shown to reduce complaints of angina, to enhance exercise capacity, to improve quality of life and to employ anti-ischaemic effects. To date, electrical neuromodulation seems to be one of the best adjuvant therapies for these patients. In addition, neuromodulation in the treatment of heart failure and resistant arrhythmias is the subject of several ongoing studies.  相似文献   
5.
Atmospheric deposition is an important nutrient input to forests. The chemical composition of the rainfall is altered by the forest canopy due to interception and canopy exchange. Bulk deposition and stand deposition (throughfall plus stemflow) of Na+, Cl?, K+, Ca2+, Mg2+, PO 4 3? , SO 4 2? , H+, Mn2+, Al3+, Fe2+, NH 4 + , NO 3 ? and Norg were measured in nine deciduous forest plots with different tree species diversity in central Germany. Interception deposition and canopy exchange rates were calculated with a canopy budget model. The investigated forest plots were pure beech (Fagus sylvatica L.) plots, three-species plots (Fagus sylvatica, Tilia cordata Mill. or T. platyphyllos Scop. and Fraxinus excelsior L.) and five-species plots (Fagus sylvatica, T. cordata or T. platyphyllos, Fraxinus excelsior, Acer platanoides L., A. pseudoplatanus L. or A. campestre L. and Carpinus betulus L.). The interception deposition of all ions was highest in pure beech plots and was negatively related to the Shannon index. The stand deposition of K+, Ca2+, Mg2+ and PO 4 3? was higher in mixed species plots than in pure beech plots due to higher canopy leaching rates in the mixed species plots. The acid input to the canopy and to the soil was higher in pure beech plots than in mixed species plots. The high canopy leaching rates of Mn2+ in pure beech plots indicated differences in soil properties between the plot types. Indeed, pH, effective cation exchange capacity and base saturation were lower in pure beech plots. This may have contributed to the lower leaching rates of K+, Ca2+ and Mg2+ compared to the mixed species plots. However, foliar analyses indicated differences in the ion status among the tree species, which may additionally have influenced canopy exchange. In conclusion, the nutrient input to the soil resulting from deposition and canopy leaching was higher in mixed species plots than in pure beech plots, whereas the acid input was highest in pure beech plots.  相似文献   
6.
We report the design and engineering of a robust, reagentless fluorescent glucose biosensor based on the periplasmic glucose-binding protein obtained from Thermotoga maritima (tmGBP). The gene for this protein was cloned from genomic DNA and overexpressed in Escherichia coli, the identity of its cognate sugar was confirmed, ligand binding was studied, and the structure of its glucose complex was solved to 1.7 Angstrom resolution by X-ray crystallography. TmGBP is specific for glucose and exhibits high thermostability (midpoint of thermal denaturation is 119 +/- 1 degrees C and 144 +/- 2 degrees C in the absence and presence of 1 mM glucose, respectively). A series of fluorescent conjugates was constructed by coupling single, environmentally sensitive fluorophores to unique cysteines introduced by site-specific mutagenesis at positions predicted to be responsive to ligand-induced conformational changes based on the structure. These conjugates were screened to identify engineered tmGBPs that function as reagentless fluorescent glucose biosensors. The Y13C*Cy5 conjugate is bright, gives a large response to glucose over concentration ranges appropriate for in vivo monitoring of blood glucose levels (1-30 mM), and can be immobilized in an orientation-specific manner in microtiter plates to give a reversible response to glucose. The immobilized protein retains its response after long-term storage at room temperature.  相似文献   
7.
Elevated nitrogen deposition has increased tree growth, the storage of soil organic matter, and nitrate leaching in many European forests, but little is known about the effect of tree species and nitrogen deposition on nitrous oxide emission. Here we report soil N2O emission from European beech, Scots pine and Norway spruce forests in two study areas of Germany with distinct climate, N deposition and soils. N2O emissions and throughfall input of nitrate and ammonium were measured biweekly during growing season and monthly during dormant season over a 28 months period. Annual N2O emission rates ranged between 0.4 and 1.3 kg N ha?1 year?1 among the stands and were higher in 1998 than in 1999 due to higher precipitation during the growing season of 1998. A 2-way-ANOVA revealed that N2O fluxes were significantly higher (p<0.001) at Solling than at Unterlüß while tree species had no effect on N2O emissions. Soil texture and the amount of throughfall explained together 94% of the variance among the stands, indicating that increasing portions of silt and clay may promote the formation of N2O in wet forest soils. Moreover, cumulative N2O fluxes were significantly correlated (r2 = 0.60, p<0.001) with cumulative NO 3 ? fluxes at 10 cm depth as an indicator of N saturation, however, the slope of the regression curve indicates a rather weak effect of NO 3 ? fluxes on N2O emissions. N input by throughfall was not correlated with N2O emissions and only 1.6–3.2% of N input was released as N2O to the atmosphere. Our results suggest that elevated N inputs have little effect on N2O emissions in beech, spruce and pine forests.  相似文献   
8.
Inter- and intraspecific studies in gonochoristic animals reveal a covariation between sperm characteristics and the size of the female reproductive tract, indicating a rapid evolutionary divergence, which is consistent with the theory of post-copulatory sexual selection. Simultaneous hermaphrodites differ from species with separate sexes (gonochorists) in that they possess both functional male and female reproductive organs at the same time. We investigated whether in hermaphroditic animals intraspecific variation in reproductive traits results from divergent coevolution, by quantifying the variation in male and female traits among six natural populations of the snail Arianta arbustorum and examining the covariation in interacting traits. There was a significant among-population variation in spermatophore volume, number of sperm transferred and sperm length, as well as in volume of the sperm storage organ (spermatheca) and number of tubules, but not in spermatheca length. We found a positive association between sperm number transferred and spermatheca volume. This result suggests that the same post-copulatory mechanisms as in gonochorists drive the correlated evolution of reproductive characters in hermaphrodites.  相似文献   
9.
10.
Periplasmic binding proteins (PBPs) comprise a protein superfamily that is involved in prokaryotic solute transport and chemotaxis. These proteins have been used to engineer reagentless biosensors to detect natural or non-natural ligands. There is considerable interest in obtaining very stable members of this superfamily from thermophilic bacteria to use as robust engineerable parts in biosensor development. Analysis of the recently determined genome sequence of Thermus thermophilus revealed the presence of more than 30 putative PBPs in this thermophile. One of these is annotated as a glucose binding protein (GBP) based on its genetic linkage to genes that are homologous to an ATP-binding cassette glucose transport system, although the PBP sequence is homologous to periplasmic maltose binding proteins (MBPs). Here we present the cloning, over-expression, characterization of cognate ligands, and determination of the X-ray crystal structure of this gene product. We find that it is a very stable (apo-protein Tm value is 100(+/- 2) degrees C; complexes 106(+/- 3) degrees C and 111(+/- 1) degrees C for glucose and galactose, respectively) glucose (Kd value is 0.08(+/- 0.03) microM) and galactose (Kd value is 0.94(+/- 0.04) microM) binding protein. Determination of the X-ray crystal structure revealed that this T. thermophilus glucose binding protein (ttGBP) is structurally homologous to MBPs rather than other GBPs. The di or tri-saccharide ligands in MBPs are accommodated in long relatively shallow grooves. In the ttGBP binding site, this groove is partially filled by two loops and an alpha-helix, which create a buried binding site that allows binding of only monosaccharides. Comparison of ttGBP and MBP provides a clear example of structural adaptations by which the size of ligand binding sites can be controlled in the PBP super family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号