首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   9篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2012年   1篇
  2011年   5篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
The genes for cellobiose utilization are normally cryptic in Escherichia coli. The cellobiose system was used as a model to understand the process by which silent genes are maintained in microbial populations. Previously reported was (1) the isolation of a mutant strain that expresses the cellobiose-utilization (Cel) genes and (2) that expression of those genes allows utilization of three beta- glucoside sugars: cellobiose, arbutin, and salicin. The Cel gene cluster has now been cloned from that mutant strain. In the course of locating the Cel genes within the cloned DNA segment, it was discovered that inactivation of the Cel-encoded hydrolase rendered the host strain sensitive to all three beta-glucosides as potent inhibitors. This sensitivity arises from the accumulation of the phosphorylated beta- glucosides. Because even the fully active genes conferred some degree of beta-glucoside sensitivity, the effects of cellobiose on a series of five Cel+ mutants of independent origin were investigated. Although each of those strains utilizes cellobiose as a sole carbon and energy source, cellobiose also acts as a potent inhibitor that reduces the growth rate on glycerol 2.5-16.5-fold. On the other hand, wild-type strains that cannot utilize cellobiose are not inhibited. The observation that the same compound can serve either as a nutrient or as an inhibitor suggests that, under most conditions in which cellobiose will be present together with other resources, there is a strong selective advantage to having the cryptic (Cel0) allele. In those environments in which cellobiose is the sole, or the best, resource, mutants that express the genes (Cel+) will have a strong selective advantage. It is suggested that temporal alternation between these two conditions is a major factor in the maintenance of these genes in E. coli populations. This alternation of environments and fitnesses was predicted by the model for cryptic-gene maintenance that was previously published.   相似文献   
2.
3.
Although osteoporosis and its related fractures are common in patients with COPD, patients at high risk of fracture are poorly identified, and consequently, undertreated. Since there are no fracture prevention guidelines available that focus on COPD patients, we developed a clinical approach to improve the identification and treatment of COPD patients at high risk of fracture. We organised a round-table discussion with 8 clinical experts in the field of COPD and fracture prevention in the Netherlands in December 2013. The clinical experts presented a review of the literature on COPD, osteoporosis and fracture prevention. Based on the Dutch fracture prevention guideline, they developed a 5-step clinical approach for fracture prevention in COPD. Thereby, they took into account both classical risk factors for fracture (low body mass index, older age, personal and family history of fracture, immobility, smoking, alcohol intake, use of glucocorticoids and increased fall risk) and COPD-specific risk factors for fracture (severe airflow obstruction, pulmonary exacerbations and oxygen therapy). Severe COPD (defined as postbronchodilator FEV1 < 50% predicted) was added as COPD-specific risk factor to the list of classical risk factors for fracture. The 5-step clinical approach starts with case finding using clinical risk factors, followed by risk evaluation (dual energy X-ray absorptiometry and imaging of the spine), differential diagnosis, treatment and follow-up. This systematic clinical approach, which is evidence-based and easy-to-use in daily practice by pulmonologists, should contribute to optimise fracture prevention in COPD patients at high risk of fracture.  相似文献   
4.
5.
Endosperm gene imprinting has long been speculated to control nutrient allocation to seeds. For the first time, an imprinted gene directly involved in this process has been identified.  相似文献   
6.
A series of surfactant peptides were created to evaluate the affinity of aromatic AAs for single-walled carbon nanotubes in the absence of complications from peptide folding or self-association. Each surfactant peptide has a lipidlike architecture, with two Lys residues at the C-terminus as a hydrophilic head, five Val residues to form a hydrophobic tail, and the testing AA at the N-terminus. Raman and CD spectroscopic studies reveal that the surfactant peptides have a large unordered structural component which is independent of peptide concentration, suggesting that the peptides undergo minimal association under experimental conditions, thus removing this interference from interpretation of the peptide/carbon nanotube interactions. A lack of peptide self-association is also indicated by sedimentation equilibrium ultracentrifugation results. Optical spectroscopy of the peptide/carbon nanotube dispersions indicate that among the three aromatic AAs, tryptophan has the highest affinity for carbon nanotubes (both bundled and individual states) when incorporated into a surfactant peptide, while the Tyr-containing peptide is more selective for individual carbon nanotubes. Phe has the lowest overall affinity for carbon nanotubes. Raman spectra of dispersions made with SPF, SPY and SPW display similar types of nanotubes dispersed, although differences in the relative nanotube populations are observed by optical spectroscopy.  相似文献   
7.
Regulation of aleurone development in cereal grains   总被引:1,自引:0,他引:1  
The aleurone layer of cereal grains is important biologically as well as nutritionally and economically. Here, current knowledge on the regulation of aleurone development is reviewed. Recent reports suggest that the control of aleurone development is more complex than earlier models portrayed. Multiple levels of genetic regulation control aleurone cell fate, differentiation, and organization. The hormones auxin and cytokinin can also influence aleurone development. New technical advances promise to facilitate future progress.  相似文献   
8.

Background

Bacterial respiratory tract infections, mainly caused by Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are among the leading causes of global mortality and morbidity. Increased resistance of these pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials.

Result

Here, we report a proof of concept study for the reliable identification of potential drug targets in these human respiratory pathogens by combining high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics. Approximately 20% of all genes in these three species were essential for growth and viability, including 128 essential and conserved genes, part of 47 metabolic pathways. By comparing these essential genes to the human genome, and a database of genes from commensal human gut microbiota, we identified and excluded potential drug targets in respiratory tract pathogens that will have off-target effects in the host, or disrupt the natural host microbiota. We propose 249 potential drug targets, 67 of which are targets for 75 FDA-approved antimicrobials and 35 other researched small molecule inhibitors. Two out of four selected novel targets were experimentally validated, proofing the concept.

Conclusion

Here we have pioneered an attempt in systematically combining the power of high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics to discover potential drug targets at genome-scale. By circumventing the time-consuming and expensive laboratory screens traditionally used to select potential drug targets, our approach provides an attractive alternative that could accelerate the much needed discovery of novel antimicrobials.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-958) contains supplementary material, which is available to authorized users.  相似文献   
9.
We report the genomic organization and deduced protein sequence of a cephalochordate member of the Otx homeobox gene family (AmphiOtx) and show its probable single-copy state in the genome. We also present molecular phylogenetic analysis indicating that there was single ancestral Otx gene in the first chordates which was duplicated in the vertebrate lineage after it had split from the lineage leading to the cephalochordates. Duplication of a C-terminal protein domain has occurred specifically in the vertebrate lineage, strengthening the case for a single Otx gene in an ancestral chordate whose gene structure has been retained in an extant cephalochordate. Comparative analysis of protein sequences and published gene expression patterns suggest that the ancestral chordate Otx gene had roles in patterning the anterior mesendoderm and central nervous system. These roles were elaborated following Otx gene duplication in vertebrates, accompanied by regulatory and structural divergence, particularly of Otx1 descendant genes.   相似文献   
10.
Genetic Analysis of Rough Sheath1 Developmental Mutants of Maize   总被引:4,自引:1,他引:3       下载免费PDF全文
P. W. Becraft  M. Freeling 《Genetics》1994,136(1):295-311
Maize Rough sheath1 (Rs1) mutants are dominant and cause a proliferation of sheath-like tissue at the base of the blade and throughout the ligular region. They also cause ligule displacement, a chaotic pattern of vasculature and abnormal cellular structure of vascular bundles. The affected region of Rs1-O leaves displays genetic and morphological attributes of both sheath and auricle, suggesting an overlap of these genetic programs. The rs1 locus maps approximately 26 map units distal to opaque2 (o2) on chromosome 7S, defining a new distal-most locus on the genetic map. Three mutant alleles, Rs1-O, Rs1-1025 and Rs1-Z, all display similar phenotypes. The mutations are completely dominant and the Rs1-O phenotype is not affected by dosage of the chromosome arm carrying the rs1(+) allele, indicating that these alleles are neomorphic. Analysis of genetic mosaics showed that the Rs1-O phenotype is non-cell-autonomous, suggesting that intercellular signals convey the phenotype. Rs1 mutant phenotypes are affected by modifiers present in particular genetic backgrounds. An enhancer of Rs1-O was identified; segregation data imply a single recessive gene, ers1. Rs1 mutants were also found to enhance the expression of unlinked rs2 and Rs4 mutants, suggesting that these mutations affect similar developmental processes. We discuss the phenotypic and genetic similarities between Rs1 and Knotted1 (Kn1) mutants that led to the identification of rs1 as a kn1-like homeobox gene (unpublished data).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号