首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   5篇
  2023年   1篇
  2021年   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1986年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
2.
Like somatic cells, mammalian spermatozoa appear to contain several different heterotrimeric G protein alpha-subunits that could mediate specialized cell responses. However, the precise Galpha subunits present, their subcellular location and their possible roles are still incompletely defined. In this study, using commercially available specific antibodies, we have shown by immunoblotting that Galpha(s) is present in human and mouse sperm lysates. Immunolocalization using intact spermatozoa from both species revealed this protein to be in the acrosomal cap region and the flagellum, particularly the principal piece. Treatment of permeabilized mouse spermatozoa with cholera toxin led to enhanced ADP-ribosylation of a protein the same size as Galpha(s), as well as an increase in cAMP, providing further proof for Galpha(s). Evidence for the presence and distinct localizations of Galpha(i2), Galpha(i3), Galpha(o), Galpha(q/11), and Galpha(olf) was also obtained. Of particular interest was Galpha(i2) which, like Galpha(s), was present in the acrosomal cap region and flagellum, the same regions where stimulatory and inhibitory adenosine receptors are localized. These observations are consistent with our hypothesis that G proteins mediate adenosine receptor modulation of adenylyl cyclase, with consequent alterations in cAMP production, apparently crucial for the spermatozoon's acquisition and maintenance of fertilizing ability.  相似文献   
3.
Russian wheat aphid, Diuraphis noxia (Mordvilko), feeding injury on 'Betta' wheat isolines with the Dn1 and Dn2 genes was compared by assessing chlorophyll and carotenoid concentrations, and aphid fecundity. The resistant Betta isolines (i.e., Betta-Dn1 and Betta-Dn2) supported similar numbers of aphids, but had significantly fewer than the susceptible Betta wheat, indicating these lines are resistant to aphid feeding. Diuraphis noxia feeding resulted in different responses in total chlorophyll and carotenoid concentrations among the Betta wheat isolines. The infested Betta-Dn2 plants had higher levels of chlorophylls and carotenoids in comparison with uninfested plants. In contrast, infested Betta-Dn1 plants had the same level of chlorophyll and carotenoid in comparison with uninfested plants. Our data provide essential information on the effect of D. noxia feeding on chlorophyll and carotenoid concentrations for Betta wheat and its isolines with D. noxia-resistant Dn1 and Dn2 genes.  相似文献   
4.
Choice and no-choice studies were conducted to determine the categories (antibiosis, antixenosis, and tolerance) of resistance of four buffalograsses (NE91-118, 'Bonnie Brae', 'Cody', and 'Tatanka') previously identified as resistant to the western chinch bug, Blissus occiduus Barber. Antibiosis studies found no significant differences in western chinch bug fecundity, nymphal development, or survival among the resistant and susceptible buffalograsses. Tolerance studies indicated that NE91-118, Cody, and Tatanka exhibited moderate-to-high levels of tolerance based on western chinch bug damage ratings and plant height, whereas Bonnie Brae exhibited moderate-to-low levels of tolerance. Choice studies indicated the presence of antixenosis in NE91-118, whereas Cody and Tatanka showed little or no antixenosis. Scanning electron microscopy was used to disclose morphological differences between NE91-118 (resistant) and '378' (susceptible). The epicuticular wax structures and trichome densities were similar between 378 and NE91-118, suggesting that morphological structures do not contribute to NE91-118 antixenosis.  相似文献   
5.
Plant germplasm collections may offer genetic variability useful in identifying insect resistance. The goal of this project was to evaluate buffalograss genotypes [Buchlo? dactyloides (Nutt.) Engelm.] for resistance to the chinch bug, Blissus occiduus Barber (Hemiptera: Lygaeidae), and to relate resistance to ploidy level, chinch bug number, and pubescence. Forty-eight buffalograss genotypes from diverse geographic locations were evaluated in replicated studies under greenhouse conditions. Of the genotypes studied, four were highly resistant, 22 were moderately resistant, 19 were moderately susceptible, and three were highly susceptible to chinch bug damage. The mean number of chinch bugs was significantly different among the 48 genotypes. There was no significant correlation between chinch bug resistance and ploidy level or chinch bug resistance and pubescence. These results indicate the genetic source of resistance to chinch bugs exists in buffalograss germplasm. Highly resistant genotypes can be used in breeding programs to further improve buffalograss cultivars.  相似文献   
6.
Blissus occiduus Barber is an important pest of buffalograss, Buchlo? dactyloides (Nuttall) Engelmann, turf. No-choice studies documented the susceptibility of selected turfgrasses, crops, and weeds to B. occiduus feeding. Highly to moderately susceptible grasses included buffalograss; yellow Setaria glauca (L.) and green foxtail Setaria viridis (L.); Kentucky bluegrass, Poa pratensis L.; perennial ryegrass, Lolium perenne L.; brome, Bromus spp. Leyss.; zoysiagrass, Zoysia japonica Steudel; Bermuda grass, Cynodon dactylon (L.) Pers.; sorghum, Sorghum bicolor (L.) Moench; tall fescue, Festuca arundinacea Schreb.; and barley Hordeum vulgare (L.). Slightly to nonsusceptible grasses included fine fescue, Festuca ovina hirtula L.; rye, Secale cereale L.; crabgrass Digitaria sanguinalis (L.); bentgrass, Agrostis palustris Huds.; wheat, Tritium aestivun L.; corn, Zea mays L.; fall panicum Panicum dichotomiflorum Michx.; and St. Augustinegrass, Stenotaphrum secundatum (Walt.) Kuntze. The reproductive potential of B. occiduus was also investigated on these same grasses. B. occiduus produced offspring on 15 of the 18 turfgrass, crop, and weed species evaluated. No reproduction occurred on either Bermuda grass or St. Augustinegrass, and buffalograss plants were killed by B. occiduus feeding before offspring could be produced.  相似文献   
7.
The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), is one of the most serious pests to livestock. It feeds mainly on cattle and causes significant economic losses in the cattle industry. Standard stable fly control involving insecticides and sanitation is usually costly and often has limited effectiveness. As we continue to evaluate and develop safer fly control strategies, the present study reports on the effectiveness of catnip (Nepeta cataria L.) oil and its constituent compounds, nepetalactones, as stable fly repellents. The essential oil of catnip reduced the feeding of stable flies by >96% in an in vitro bioassay system, compared with other sesquiterpene-rich plant oils (e.g. amyris and sandalwood). Catnip oil demonstrated strong repellency against stable flies relative to other chemicals for repelling biting insects, including isolongifolenone, 2-methylpiperidinyl-3-cyclohexen-1-carboxamide and (1S,2'S)-2-methylpiperidinyl-3-cyclohexen-1-carboxamide. The repellency against stable flies of the most commonly used mosquito repellent, DEET, was relatively low. In field trials, two formulations of catnip oil provided >95% protection and were effective for up to 6 h when tested on cattle. Catnip oil also acted as a strong oviposition repellent and reduced gravid stable fly oviposition by 98%.  相似文献   
8.
Highlights? Domains from PLCγ regulatory region show structural and functional integration ? Only cSH2 domain interacts with the PLC-core forming a high affinity surface ? Activation involves removal of autoinhibition and dissociation from the receptor ? Disease-linked mutations map to the autoinhibitory interface  相似文献   
9.
10.
Global change is affecting primary productivity in forests worldwide, and this, in turn, will alter long‐term carbon (C) sequestration in wooded ecosystems. On one hand, increased primary productivity, for example, in response to elevated atmospheric carbon dioxide (CO2), can result in greater inputs of organic matter to the soil, which could increase C sequestration belowground. On other hand, many of the interactions between plants and microorganisms that determine soil C dynamics are poorly characterized, and additional inputs of plant material, such as leaf litter, can result in the mineralization of soil organic matter, and the release of soil C as CO2 during so‐called “priming effects”. Until now, very few studies made direct comparison of changes in soil C dynamics in response to altered plant inputs in different wooded ecosystems. We addressed this with a cross‐continental study with litter removal and addition treatments in a temperate woodland (Wytham Woods) and lowland tropical forest (Gigante forest) to compare the consequences of increased litterfall on soil respiration in two distinct wooded ecosystems. Mean soil respiration was almost twice as high at Gigante (5.0 μmol CO2 m?2 s?1) than at Wytham (2.7 μmol CO2 m?2 s?1) but surprisingly, litter manipulation treatments had a greater and more immediate effect on soil respiration at Wytham. We measured a 30% increase in soil respiration in response to litter addition treatments at Wytham, compared to a 10% increase at Gigante. Importantly, despite higher soil respiration rates at Gigante, priming effects were stronger and more consistent at Wytham. Our results suggest that in situ priming effects in wooded ecosystems track seasonality in litterfall and soil respiration but the amount of soil C released by priming is not proportional to rates of soil respiration. Instead, priming effects may be promoted by larger inputs of organic matter combined with slower turnover rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号