首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   2篇
  2022年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   8篇
  2011年   7篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1979年   3篇
  1973年   2篇
  1972年   2篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
In the guinea pig, EPSPs and population spikes were found to be generated in the apical dendrites of pyramidal neurons of middle and ventral hippocampus, in response to dorsal hippocampal commissure (PSD) stimulation, without any involvement of dentate gyrus granule cells of corresponding segments. These long-latency synaptic effects were evoked only by repetitive (0.2-2.0 c/sec) PSD stimulation and showed increasing latency in ventral direction. A cross section between dorsal and middle hippocampus was followed by the disappearance of the responses ventrally to the section. The results show that the postsynaptic discharge of dorsal pyramidal neurons is transferred to more ventral hippocampal segments by an intrahippocampal longitudinal association system.  相似文献   
2.
A long lasting evoked response, generated in the hippocampal field CA1-CA2 following postsynaptic sequential discharge of hippocampal pyramids and entorhinal neurons, has been analyzed by multiple simultaneous surface and depth recordings in the guinea pig dorsal hippocampal region. Results obtained suggest that it can be associated with postsynaptic excitatory potentials evoked in the distal portion of the apical dendrites of field CA1-CA2 pyramids by perforant neurons selectively discharged by impulses of hippocampal origin.  相似文献   
3.
Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS.  相似文献   
4.
Evoked potentials, represented by population spikes and slow waves, have been recorded from the subiculum, along its whole dorso-ventral extent, following postsynaptic activation and discharge of hippocampal pyramidal neurons. These potentials can be associated with synaptic excitatory effects generated on radially oriented neurons by hippocampal impulses reaching the subiculum at any dorso-ventral level, according to a segmental organization.  相似文献   
5.
Understanding the molecular architectures of enveloped and complex viruses is a challenging frontier in structural biology. In these viruses, the structural and compositional variation from one viral particle to another generally precludes the use of either crystallization or image averaging procedures that have been successfully implemented in the past for highly symmetric viruses. While advances in cryo electron tomography of unstained specimens provide new opportunities for identification and molecular averaging of individual subcomponents such as the surface glycoprotein spikes on purified viruses, electron tomography of stained and plunge-frozen cells is being used to visualize the cellular context of viral entry and replication. Here, we review recent developments in both areas as they relate to our understanding of the biology of heterogeneous and pleiomorphic viruses.  相似文献   
6.
7.
Objectives: Among the many pathological aspects of Down syndrome, brain hypoplasia and mental retardation have been recently ascribed to defective proliferation of neural precursors during central nervous system development. By analogy, other features of Down syndrome, such as heart defects, gastrointestinal abnormalities, craniofacial dystrophy and reduced growth rate could be related, at least in theory, to similar proliferation impairment in peripheral tissues.
Materials and methods: In order to test this hypothesis, we evaluated cell proliferation in peripheral tissues of the Ts65Dn mouse, one of the animal models most commonly used to investigate Down syndrome.
Results: In fibroblast cultures from neonatal Ts65Dn mice, we found that cell proliferation was notably impaired. While length of the cell cycle was similar in fibroblasts from Ts65Dn and control mice, the number of actively proliferating cells was significantly smaller in Ts65Dn mice. Moreover, fibroblasts from Ts65Dn animals exhibited limited population-doubling capacity, decreased proliferative lifespan and premature senescence. Analysis of cell proliferation in the skin of neonates, in vivo , showed that in Ts65Dn mice, cell proliferation was significantly reduced compared to control mice.
Conclusions: Our results suggest that defective proliferation may be a generalized feature of trisomic mice. In view of the genetic and phenotypic similarities between Ts65Dn mice and individuals with Down syndrome, proliferation impairment in various organs may also occur in subjects with Down syndrome. Thus, perturbation of a basic developmental function, cell proliferation, may be a critical determinant that contributes to the many aspects of pathology of this condition.  相似文献   
8.
Ts65Dn mice, trisomic for a portion of chromosome 16 segmentally homologous to human chromosome 21, are an animal model for Down's syndrome and related neurodegenerative diseases, such as dementia of the Alzheimer type. In these mice, cognitive deficits and alterations in number of basal forebrain cholinergic neurons have been described. We have measured in Ts65Dn mice the catalytic activity of the cholinergic marker, choline acetyltransferase (ChAT), as well as the activity of the acetylcholine-degrading enzyme acetylcholinesterase (AChE), in the hippocampus and in cortical targets of basal forebrain cholinergic neurons. In mice aged 10 months, ChAT activity was significantly higher in Ts65Dn mice, compared to 2N animals, in the hippocampus, olfactory bulb, olfactory cortex, pre-frontal cortex, but not in other neocortical regions. At 19 months of age, on the other hand, no differences in ChAT activity were found. Thus, alterations of ChAT activity in these forebrain areas seem to recapitulate those recently described in patients scored as cases of mild cognitive impairment or mild Alzheimer's disease. Other neurochemical markers putatively associated with the disease progression, such as those implicating astrocytic hyperactivity and overproduction of amyloid precursor protein family, were preferentially found altered in some brain regions at the oldest age examined (19 months).  相似文献   
9.
Delivery of exogenous mRNA using lipid nanoparticles (LNPs) is a promising strategy for therapeutics. However, a bottleneck remains in the poor understanding of the parameters that correlate with endosomal escape versus cytotoxicity. To address this problem, we compared the endosomal distribution of six LNP-mRNA formulations of diverse chemical composition and efficacy, similar to those used in mRNA-based vaccines, in primary human adipocytes, fibroblasts, and HeLa cells. Surprisingly, we found that total uptake is not a sufficient predictor of delivery, and different LNPs vary considerably in endosomal distributions. Prolonged uptake impaired endosomal acidification, a sign of cytotoxicity, and caused mRNA to accumulate in compartments defective in cargo transport and unproductive for delivery. In contrast, early endocytic/recycling compartments have the highest probability for mRNA escape. By using super-resolution microscopy, we could resolve a single LNP-mRNA within subendosomal compartments and capture events of mRNA escape from endosomal recycling tubules. Our results change the view of the mechanisms of endosomal escape and define quantitative parameters to guide the development of mRNA formulations toward higher efficacy and lower cytotoxicity.  相似文献   
10.
Highlights? Efficient extraction of high-resolution information from cryo-EM tilt series ? Successful CTF correction strategy despite low-contrast and quality of tilted images ? Use of geometric constraints in refinement improves orientational accuracy of images ? Enforcement of tomographic constraints reduces model bias and overfitting artifacts  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号