首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   2篇
  国内免费   14篇
  2023年   9篇
  2022年   5篇
  2021年   10篇
  2020年   7篇
  2019年   7篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   8篇
  2014年   7篇
  2013年   7篇
  2012年   16篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有109条查询结果,搜索用时 250 毫秒
1.
Flowering time is one of important agronomic traits determining the crop yield and affected by high temperature. When facing high ambient temperature, plants often initiate early flowering as an adaptive strategy to escape the stress and ensure successful reproduction. However, here we find opposing ways in the short-day crop soybean to respond to different levels of high temperatures, in which flowering accelerates when temperature changes from 25 to 30 °C, but delays when temperature reaches 35 °C under short day. phyA-E1, possibly photoperiodic pathway, is crucial for 35 °C-mediated late flowering, however, does not contribute to promoting flowering at 30 °C. 30 °C-induced up-regulation of FT2a and FT5a leads to early flowering, independent of E1. Therefore, distinct responsive mechanisms are adopted by soybean when facing different levels of high temperatures for successful flowering and reproduction.  相似文献   
2.
【背景】由病原菌Sclerotium denigrans侵染引起的平贝母菌核病是其主要的鳞茎病害之一,给平贝母种植产业带来了巨大的损失。【目的】筛选出对平贝母菌核病具有拮抗效果的木霉菌株。【方法】以平贝母菌核病作为靶标菌,采用平板对峙试验、平板对扣法、圆盘滤膜法与发酵液抑菌试验筛选对平贝母菌核病具有拮抗效果的木霉菌株。采用顶空固相微萃取的方法检测拮抗效果较好的木霉菌挥发性成分;二硝基水杨酸(dinitrosalicylic acid, DNS)比色法测定木霉菌的β-1,3葡聚糖酶的活性;室内防效试验验证其对平贝母菌核病的防治效果。【结果】平板对峙试验发现木霉菌F1、F2和D6对平贝母菌核病菌的生长具有较强的抑制作用,其抑菌率分别为91.06%、87.00%和86.12%;平板对扣法发现木霉菌E17和A26对菌核病菌的抑制效果最为明显,抑菌率分别为74.96%和75.86%;圆盘滤膜法发现菌核病菌在F2、C6、D3、F4、A26、B30、D4和D6的琼脂培养基上均不生长,抑菌率达100%;发酵液抑菌试验表明木霉菌D3抑制效果最强,可完全抑制菌核病菌的生长,抑菌率为100%;对A26、D4、E8、E17和D3这5株木霉进行GC/MS挥发性产物分析,在E17发现了具有抗真菌活性的6-戊基-2H-吡喃-2-酮等活性物质;DNS比色法发现β-1,3葡聚糖酶活性最高的木霉菌为F1;室内防效试验测定发现D3能明显抑制平贝母鳞茎菌核病的病变,对平贝母菌核病具有潜在的生防活性。【结论】木霉菌D3在防治平贝母菌核病中是极具开发价值的菌种。  相似文献   
3.
Flowering time and plant height are key agronomic traits that directly affect soybean (Glycine max) yield. APETALA1 (AP1) functions as a class A gene in the ABCE model for floral organ development, helping to specify carpel, stamen, petal, and sepal identities. There are four AP1 homologs in soybean, all of which are mainly expressed in the shoot apex. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR) – CRISPR‐associated protein 9 technology to generate a homozygous quadruple mutant, gmap1, with loss‐of‐function mutations in all four GmAP1 genes. Under short‐day (SD) conditions, the gmap1 quadruple mutant exhibited delayed flowering, changes in flower morphology, and increased node number and internode length, resulting in plants that were taller than the wild type. Conversely, overexpression of GmAP1a resulted in early flowering and reduced plant height compared to the wild type under SD conditions. The gmap1 mutant and the overexpression lines also exhibited altered expression of several genes related to flowering and gibberellic acid metabolism, thereby providing insight into the role of GmAP1 in the regulatory networks controlling flowering time and plant height in soybean. Increased node number is the trait with the most promise for enhancing soybean pod number and grain yield. Therefore, the mutant alleles of the four AP1 homologs described here will be invaluable for molecular breeding of improved soybean yield.  相似文献   
4.
Early diagnosis of lung adenocarcinoma requires effective risk predictors. TNFRII was reported to be related to tumorigenesis, but remained unclear in lung cancer. This research set out to investigate the relationship between the sTNFRII (serum TNFRII) level and the risk of lung adenocarcinoma less than 1 cm in diameter. Seventy-one pairs of subcentimetre lung adenocarcinoma patients and healthy controls were analysed through multiplex bead-based Luminex assay and found a significantly lower expression of sTNFRII in patients with subcentimetre lung adenocarcinoma than that in the healthy controls (P < .001), which was further verified through ONCOMINE database analysis. Increased levels of sTNFRII reduced the risk of subcentimetre lung adenocarcinoma by 89% (P < .001). Patients with a higher level of BLC had a 2.70-fold (P < .01) higher risk of subcentimetre adenocarcinoma. Furthermore, a higher BLC/TNFRII ratio was related to a 35-fold higher risk of subcentimetre adenocarcinoma. TNFRII showed good specificity, sensitivity and accuracy (0.72, 0.75 and 0.73, respectively), with an AUC of 0.73 (P < .001). In conclusion, the present study assessed the value of sTNFRII as a potential biomarker to predict the risk of subcentimetre lung adenocarcinoma and provided evidence for the further use of TNFRII as an auxiliary marker in the diagnosis of subcentimetre lung adenocarcinoma.  相似文献   
5.
Photoperiodic flowering is one of the most important factors affecting regional adaptation and yield in soybean (Glycine max). Plant adaptation to long-day conditions at higher latitudes requires early flowering and a reduction or loss of photoperiod sensitivity; adaptation to short-day conditions at lower latitudes involves delayed flowering, which prolongs vegetative growth for maximum yield potential. Due to the influence of numerous major loci and quantitative trait loci (QTLs), soybean has broad adaptability across latitudes. Forward genetic approaches have uncovered the molecular basis for several of these major maturity genes and QTLs. Moreover, the molecular characterization of orthologs of Arabidopsis thaliana flowering genes has enriched our understanding of the photoperiodic flowering pathway in soybean. Building on early insights into the importance of the photoreceptor phytochrome A, several circadian clock components have been integrated into the genetic network controlling flowering in soybean: E1, a repressor of FLOWERING LOCUS T orthologs, plays a central role in this network. Here, we provide an overview of recent progress in elucidating photoperiodic flowering in soybean, how it contributes to our fundamental understanding of flowering time control, and how this information could be used for molecular design and breeding of high-yielding soybean cultivars.  相似文献   
6.
7.
为明确枯草芽孢杆菌可湿性粉剂(WP)对人参黑斑病的防治效果及对人参生长的安全性,采用生长速率法测定枯草芽孢杆菌对人参黑斑病菌的室内抑菌效果,采用田间小区试验评价枯草芽孢杆菌对人参黑斑病的防治效果及其对人参的安全性。室内抑菌试验结果表明:枯草芽孢杆菌对人参黑斑病菌的菌丝生长具有较好的抑制作用,EC_(50)和EC_(90)分别为0.690 mg/L和103.402 mg/L。两年三地田间试验结果表明:1 000亿CFU/g枯草芽孢杆菌WP在3种施用剂量下对人参黑斑病均有较好的防治效果,平均防效在69.02%~80.95%,其中使用剂量为80 g/667 m~2时防效最好,与对照药剂250 g/L嘧菌酯SC防效差异不显著(P0.05)。该药剂对人参生长无不良影响。1 000亿CFU/g枯草芽孢杆菌WP对人参安全,可用于人参黑斑病的防治,建议在人参发病前或发病初期茎叶喷雾,推荐剂量为60~80 g/667 m~2。  相似文献   
8.
9.
10.
Numerous liver diseases are associated with extensive oxidative tissue damage. It is well established that Wnt/β-catenin signaling directs multiple hepatocellular processes, including development, proliferation, regeneration, nutrient homeostasis, and carcinogenesis. It remains unexplored whether Wnt/β-catenin signaling provides hepatocyte protection against hepatotoxin-induced apoptosis. Conditional, liver-specific β-catenin knockdown (KD) mice and their wild-type littermates were challenged by feeding with a hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to induce chronic oxidative liver injury. Following the DDC diet, mice with β-catenin-deficient hepatocytes demonstrate increased liver injury, indicating an important role of β-catenin signaling for liver protection against oxidative stress. This finding was further confirmed in AML12 hepatocytes with β-catenin signaling manipulation in vitro using paraquat, a known oxidative stress inducer. Immunofluorescence staining revealed an intense nuclear FoxO3 staining in β-catenin-deficient livers, suggesting active FoxO3 signaling in response to DDC-induced liver injury when compared with wild-type controls. Consistently, FoxO3 target genes p27 and Bim were significantly induced in β-catenin KD livers. Conversely, SGK1, a β-catenin target gene, was significantly impaired in β-catenin KD hepatocytes that failed to inactivate FoxO3. Furthermore, shRNA-mediated deletion of FoxO3 increased hepatocyte resistance to oxidative stress-induced apoptosis, confirming a proapoptotic role of FoxO3 in the stressed liver. Our findings suggest that Wnt/β-catenin signaling is required for hepatocyte protection against oxidative stress-induced apoptosis. The inhibition of FoxO through its phosphorylation by β-catenin-induced SGK1 expression reduces the apoptotic function of FoxO3, resulting in increased hepatocyte survival. These findings have relevance for future therapies directed at hepatocyte protection, regeneration, and anti-cancer treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号