首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   7篇
  2012年   7篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
Molecular Biology Reports - Molecular studies on egg production in ducks were mostly focused on brain and ovaries as they are directly involved in egg production. Liver plays a vital role in...  相似文献   
2.
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD, which in turn donates an electron to O2, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.  相似文献   
3.
Reactive nitrogen/oxygen species (ROS/RNS) at low concentrations play an important role in regulating cell function, signaling, and immune response but in unregulated concentrations are detrimental to cell viability1, 2. While living systems have evolved with endogenous and dietary antioxidant defense mechanisms to regulate ROS generation, ROS are produced continuously as natural by-products of normal metabolism of oxygen and can cause oxidative damage to biomolecules resulting in loss of protein function, DNA cleavage, or lipid peroxidation3, and ultimately to oxidative stress leading to cell injury or death4. Superoxide radical anion (O2•-) is the major precursor of some of the most highly oxidizing species known to exist in biological systems such as peroxynitrite and hydroxyl radical. The generation of O2•- signals the first sign of oxidative burst, and therefore, its detection and/or sequestration in biological systems is important. In this demonstration, O2•- was generated from polymorphonuclear neutrophils (PMNs). Through chemotactic stimulation with phorbol-12-myristate-13-acetate (PMA), PMN generates O2•- via activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase5. Nitric oxide (NO) synthase which comes in three isoforms, as inducible-, neuronal- and endothelial-NOS, or iNOS, nNOS or eNOS, respectively, catalyzes the conversion of L- arginine to L-citrulline, using NADPH to produce NO6. Here, we generated NO from endothelial cells. Under oxidative stress conditions, eNOS for example can switch from producing NO to O2•- in a process called uncoupling, which is believed to be caused by oxidation of heme7 or the co-factor, tetrahydrobiopterin (BH4)8.There are only few reliable methods for the detection of free radicals in biological systems but are limited by specificity and sensitivity. Spin trapping is commonly used for the identification of free radicals and involves the addition reaction of a radical to a spin trap forming a persistent spin adduct which can be detected by electron paramagnetic resonance (EPR) spectroscopy. The various radical adducts exhibit distinctive spectrum which can be used to identify the radicals being generated and can provide a wealth of information about the nature and kinetics of radical production9.The cyclic nitrones, 5,5-dimethyl-pyrroline-N-oxide, DMPO10, the phosphoryl-substituted DEPMPO11, and the ester-substituted, EMPO12 and BMPO13, have been widely employed as spin traps--the latter spin traps exhibiting longer half-lives for O2•- adduct. Iron (II)-N-methyl-D-glucamine dithiocarbamate, Fe(MGD)2 is commonly used to trap NO due to high rate of adduct formation and the high stability of the spin adduct14.  相似文献   
4.
Tissue invasive helminth infections and tuberculosis (TB) are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4+ and CD8+ T cell responses as well as the systemic (plasma) cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections—Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4+ and CD8+ T cells and their component subsets (including multifunctional cells), we report a significant diminution in the mycobacterial–specific frequencies of mono- and multi–functional CD4+ Th1 and (to a lesser extent) Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4+ and CD8+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2)- and Th17 (IL-17A and IL-17F)-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection) profound inhibition of antigen-specific CD4+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB.  相似文献   
5.
6.
Diabetes-induced hyperlipidemia, oxidative stress and protein glycation impair cellular calcium and sodium homeostasis associated with abnormal membrane-bound enzyme activities resulting in cardiac dysfunction in diabetes. To explore the cardioprotective mechanism of green tea in diabetes, we measured the changes in the levels of calcium, sodium, potassium and the activities of Na+/K+ -ATPase and Ca2+ -ATPase in green tea treated diabetic rat hearts. The effect of green tea on triglycerides, lipid peroxidation and protein glycation in diabetic heart were also measured to elucidate the underlying mechanisms. Diabetes was induced by streptozotocin (STZ, 60 mg/kg i.p.). Six weeks after the induction of diabetes, some of the diabetic rats were treated orally with green tea extract (GTE) (300 mg/kg/day) for 4 weeks. GTE produced reduction in blood glucose and lowered the levels of lipid peroxides, triglycerides and extent of protein glycation in the heart of diabetic rats. GTE blunted the rise in cardiac [Ca2+] and [Na+] whereas increased the activities of Ca2+ -ATPase and Na+/K+ -ATPase in diabetic rats. In conclusion, the data provide support to the therapeutic effect of GTE and suggest that a possible mechanism of action may be associated with the attenuation of the rise in [Ca2+] and [Na+] by ameliorating Ca2+ -ATPase and Na+/K+ -ATPase activities.  相似文献   
7.
An effective protocol was developed for in vitro regeneration of the Melothria maderaspatana via indirect organogenesis in liquid and solid culture systems. Organogenesis was achieved from liquid culture calluses derived from leaf and petiole explants of mature plants. Organogenic calluses (98.2?±?0.36 and 94.8?±?0.71%) were induced from both leaf and petiole explants on Murashige and Skoog (MS) liquid medium containing 6.0 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 µM thidiazuron (TDZ); and 6.0 µM 2,4-D and 1.0 µM benzyladenine (BA) combinations, respectively. Adventitious shoot regeneration (68.2?±?0.06 shoots per explant) was achieved on MS medium supplemented with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water and 0.06 mM glutamine from leaf-derived calluses. Petiole-derived calluses produced adventitious shoots (45.4?±?0.09 shoots per explant) on MS medium fortified with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water, and 0.08 mM glutamine. Elongation of shoots occurred in MS medium with 2.0 µM gibberellic acid (GA3). Regenerated shoots (2–3 cm in length) rooted (74.2?±?0.38%) and hardened (85?±?1.24%) when they were transferred to 1/2-MS medium supplemented with 3.0 µM indole-3-butyric acid (IBA) followed by garden soil, vermiculate, and sand (2:1:1 ratio) mixture. The elongated shoots (4–5 cm in length) were exposed simultaneously for rooting as well as hardening (100%) in moistened [(1/8-MS basal salt solution with 5 µM IBA and 100 mg l?1 Bavistin® (BVN)] garden soil, vermiculate, and sand (2:1:1 ratio) mixture. Subsequently, the plants were successfully established in the field. The survival percentage differed with seasonal variations.  相似文献   
8.
Identification of Mycobacterium tuberculosis antigens inducing cellular immune responses is required to improve the diagnosis of and vaccine development against tuberculosis. To identify the antigens of M. tuberculosis that differentiated between tuberculosis (TB) patients and healthy contacts based on T cell reactivity, the culture filtrate of in vitro grown M. tuberculosis was fractionated by two-dimensional liquid phase electrophoresis and tested for the ability to stimulate T cells in a whole blood assay. This approach separated the culture filtrate into 350 fractions with sufficient protein quantity (at least 200 μg of protein) for mass spectrometry and immunological analyses. High levels of interferon-γ (IFN-γ) secretion were induced by 105 fractions in healthy contacts compared with TB patients (p < 0.05). Most interesting was the identification of 10 fractions that specifically induced strong IFN-γ production in the healthy contact population but not in TB patients. Other immunological measurements showed 42 fractions that induced significant lymphocyte proliferative responses in the healthy contact group compared with the TB patients. The tumor necrosis factor-α response for most of the fractions did not significantly differ in the tested groups, and the interleukin-4 response was below the detectable range for all fractions and both study groups. Proteomic characterization of the 105 fractions that induced a significant IFN-γ response in the healthy contacts compared with the TB patients led to the identification of 59 proteins of which 24 represented potentially novel T cell antigens. Likewise, the protein identification in the 10 healthy “contact-specific fractions” revealed 16 proteins that are key candidates as vaccine or diagnostic targets.Tuberculosis (TB)1 is a major health problem throughout the world. A recent World Health Organization report shows that TB has been increasing at a rate of 1% per year, and an estimated 9.2 million new cases arise each year (1). Although TB is preventable, there has been an increase in its incidence in recent years. Re-emergence of TB is mainly due to its association with human immunodeficiency virus infection (2) and also due to the occurrence of multidrug-resistant strains of the causative agent, Mycobacterium tuberculosis (3).Vaccination of general population is cost effective and represents one of the best biological measures for disease control. The current vaccine against tuberculosis, Bacille Calmette-Guérin (BCG), has been administered to more people than any other vaccine. The side effects of BCG are tolerable, and it prevents miliary and meningeal tuberculosis in young children. In striking contrast, it affords limited and highly variable protection (0–80%) against pulmonary TB (4). Thus, BCG does not seem to be a satisfactory vaccine (5, 6) and necessitates exploration of newer strategies to improve BCG or to develop a more effective vaccine.One of the potential strategies for the development of an improved TB vaccine involves the use of the proteins secreted by M. tuberculosis during growth. There is evidence that proteins actively secreted by M. tuberculosis during growth induce cell-mediated immune responses by causing expansion of specific interferon-γ (IFN-γ)-producing T lymphocytes that are capable of recognizing and exerting antimicrobial effects against infected macrophages (7). The importance of IFN-γ pathways in host defense against M. tuberculosis was clarified by experimental studies on IFN-γ knock-out mice as well as the identification and characterization of humans with mutations in IFN-γ receptor (8, 9).Several studies have been carried out to define the secreted proteome of M. tuberculosis. The earliest study aimed at the identification of mycobacterial culture filtrate proteins, using chromatography and N-terminal sequencing to identify eight culture filtrate proteins (10). Later, many studies used two-dimensional (2D) PAGE combined with sensitive mass spectrometric methods for identification of proteins. The above mentioned approaches have identified nearly 300 culture filtrate proteins (1113).Identification of T cell antigens in a complex mixture was first done by a T cell Western blot method (14). Later, two-dimensional separation methods were used that involved protein separation by either IEF (15) or chromatography (16) in the first dimension and preparative SDS-PAGE followed by whole gel elution (17) in the second dimension. Mouse T cell antigens of M. tuberculosis were identified using this method (15). Mycobacterial antigens that induce an immune response in healthy household contacts and treated TB patients were also mapped using this approach (16).In the present study, 2D liquid phase electrophoresis (LPE) along with an in vitro IFN-γ assay and LC-MS/MS were used to identify potential human T cell antigens. Systematic screening of the M. tuberculosis culture filtrate (CF) proteome and comparative evaluation of cellular immune responses between TB patients and healthy contacts led to the identification of 59 proteins in the most immunogenic 2D LPE fractions. Twenty-four potentially novel T cell antigens were identified, and 16 proteins were identified in 10 2D LPE fractions that differentiated healthy contacts from TB patients based on IFN-γ responses.  相似文献   
9.

Introduction

Tuberculosis (TB) is a notifiable disease and health care providers are required to notify every TB case to local authorities. We conducted a pilot study to determine the usefulness and feasibility of mobile interface in TB notification (MITUN) voice based system for notification of TB cases by private medical practitioners.

Methodology

The study was conducted during September 2013 to October 2014 in three zones of Chennai, an urban setting in South India. Private clinics wherein services are provided by single private medical practitioners were approached. The steps involved in MITUN included: Registration of the practitioners and notification of TB cases by them through voice interactions. Pre and post-intervention questionnaires were administered to collect information on TB notification practices and feasibility of MITUN after an implementation period of 6 months.

Results

A total of 266 private medical practitioners were approached for the study. Of them, 184 (69%) participated in the study; of whom 11 (6%) practitioners used MITUN for TB notification. Reasons for not using MITUN include lack of time, referral of patients to government facility, issues related to patient confidentiality and technical problems. Suggestions for making mobile phone based TB notification process user-friendly included reducing call duration, including only crucial questions and using missed call or SMS options.

Conclusion

The performance (feasibility and usefulness) of MITUN voice based system for TB notification in the present format was sub-optimal. Perceived problems, logistical and practical issues preclude scale–up of notification of TB by private practitioners.  相似文献   
10.
Wild pulse accessions are considered a vital source of genes for insect resistance for crop improvement programmes. Wild pulses resistant to infestation towards the bruchid insect pest, Callosobruchus maculatus from South India were chosen to screen the existence of potent insecticidal protein, arcelin from APA locus (Arcelin/Phytohemagglutinin/α-Amylase inhibitor) to ascertain their nature and functional diversity without any specific indication for insect resistant factors. The DNA sequence coding for arcelin from various species of wild pulses were amplified, sequenced and deduced to their protein sequences. These protein sequences were examined physico-chemically using several bioinformatics tools and docked with various sugars to resolve the nature of arcelin molecules. Results indicated the presence of significant differences in the properties of arcelin molecules from various species of Indian wild pulses with their amino acid sequences, several physico-chemical properties and binding ability with sugars. The differences observed on these arcelin molecules from diverse wild pulses are predicted to provide a prospective insect pest control factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号