首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   6篇
  2023年   2篇
  2021年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   9篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   3篇
  2010年   5篇
  2009年   5篇
  2007年   10篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1995年   1篇
  1992年   1篇
  1986年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1968年   1篇
  1965年   1篇
  1963年   1篇
  1961年   1篇
  1960年   1篇
  1959年   1篇
排序方式: 共有83条查询结果,搜索用时 218 毫秒
1.
2.
3.
This paper is a response to Gray MM, Sutter NB, Ostrander EA, Wayne RK: The IGF1 small dog haplotype is derived from Middle Eastern grey wolves. BMC Biology 2010, 8:16.  相似文献   
4.
Bange G  Wild K  Sinning I 《Current biology : CB》2007,17(22):R980-R982
Co-translational protein targeting by the signal recognition particle (SRP) relies on a complex series of structural rearrangements in the SRP and its receptor (SR). In order to precisely coordinate the individual steps, the GTPases of the SRP and the SR form a unique complex in which GTP hydrolysis is activated in a composite active site. A recent study provides new insights on the link between the GTPases and protein translocation.  相似文献   
5.
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.  相似文献   
6.
Spatiotemporal regulation of cell polarity plays a role in many fundamental processes in bacteria and often relies on ‘landmark’ proteins which recruit the corresponding clients to their designated position. Here, we explored the localization of two multi‐protein complexes, the polar flagellar motor and the chemotaxis array, in Shewanella putrefaciens CN‐32. We demonstrate that polar positioning of the flagellar system, but not of the chemotaxis system, depends on the GTPase FlhF. In contrast, the chemotaxis array is recruited by a transmembrane protein which we identified as the functional ortholog of Vibrio cholerae HubP. Mediated by its periplasmic N‐terminal LysM domain, SpHubP exhibits an FlhF‐independent localization pattern during cell cycle similar to its Vibrio counterpart and also has a role in proper chromosome segregation. In addition, while not affecting flagellar positioning, SpHubP is crucial for normal flagellar function and is involved in type IV pili‐mediated twitching motility. We hypothesize that a group of HubP/FimV homologs, characterized by a rather conserved N‐terminal periplasmic section required for polar targeting and a highly variable acidic cytoplasmic part, primarily mediating recruitment of client proteins, serves as polar markers in various bacterial species with respect to different cellular functions.  相似文献   
7.
Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H(2)O(2), and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H(2)O(2,) as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium.  相似文献   
8.
BACKGROUND: Biochemical testing for pheochromocytoma by measurement of fractionated plasma metanephrines is limited by false positive rates of up to 18% in people without known genetic predisposition to the disease. The plasma normetanephrine fraction is responsible for most false positives and plasma normetanephrine increases with age. The objective of this study was to determine if we could improve the specificity of fractionated plasma measurements, by statistically adjusting for age. METHODS: An age-adjusted metanephrine score was derived using logistic regression from 343 subjects (including 33 people with pheochromocytoma) who underwent fractionated plasma metanephrine measurements as part of investigations for suspected pheochromocytoma at Mayo Clinic Rochester (derivation set). The performance of the age-adjusted score was validated in a dataset of 158 subjects (including patients 23 with pheochromocytoma) that underwent measurements of fractionated plasma metanephrines at Mayo Clinic the following year (validation dataset). None of the participants in the validation dataset had known genetic predisposition to pheochromocytoma. RESULTS: The sensitivity of the age-adjusted metanephrine score was the same as that of traditional interpretation of fractionated plasma metanephrine measurements, yielding a sensitivity of 100% (23/23, 95% confidence interval [CI] 85.7%, 100%). However, the false positive rate with traditional interpretation of fractionated plasma metanephrine measurements was 16.3% (22/135, 95% CI, 11.0%, 23.4%) and that of the age-adjusted score was significantly lower at 3.0% (4/135, 95% CI, 1.2%, 7.4%) (p < 0.001 using McNemar's test). CONCLUSION: An adjustment for age in the interpretation of results of fractionated plasma metanephrines may significantly decrease false positives when using this test to exclude sporadic pheochromocytoma. Such improvements in false positive rate may result in savings of expenditures related to confirmatory imaging.  相似文献   
9.
At present, Salmonella is considered to express two peroxiredoxin-type peroxidases, TsaA and AhpC. Here we describe an additional peroxiredoxin, Tpx, in Salmonella enterica and show that a single tpx mutant is susceptible to exogenous hydrogen peroxide (H2O2), that it has a reduced capacity to degrade H2O2 compared to the ahpCF and tsaA mutants, and that its growth is affected in activated macrophages. These results suggest that Tpx contributes significantly to the sophisticated defense system that the pathogen has evolved to survive oxidative stress.Salmonella is an important human pathogen which causes a variety of diseases, including gastroenteritis, septicemia, and typhoid fever. In the host, salmonellae reside inside phagocytic cells and are exposed to various host defense mechanisms, including oxidative stress (13). The production of superoxide anion (O2) is crucial, as individuals with chronic granulomatous disease, which is due to a defective phagocyte NADPH oxidase, are more susceptible to infections with Salmonella (10). Likewise, diminished NADPH oxidase activity leads to increased susceptibility to Salmonella in murine macrophages (20-22, 25). Superoxide anion (O2) is weakly reactive and fails to pass through the bacterial cell wall. After conversion to H2O2 by either spontaneous or enzymatic dismutation by superoxide dismutases, it readily diffuses into the bacterial cell and forms reactive hydroxyl radicals (OH) that damage macromolecules such as DNA, proteins, and lipids (12, 17).In principle, Salmonella possesses two classes of enzymes to degrade H2O2. Catalases degrade H2O2 to water and molecular oxygen independent of an additional reductant. Peroxiredoxin-type peroxidases (peroxiredoxins) reduce organic hydroperoxides to alcohols and hydrogen peroxide to water at the expense of NADH or NADPH. In a recent study by Hébrard et al., three members of the catalase family, KatG, KatE, and KatN, and two members of the peroxiredoxin family, AhpC and TsaA, were characterized in Salmonella (14). Previously it had been shown that single katE, katG, and katN Salmonella mutants did not show increased susceptibility to exogenous H2O2 (3, 24). In macrophages a katG katE katN triple mutant had no growth defect, whereas an ahpCF tsaA double mutant showed a reduced growth rate in macrophages (14). These observations point out the multiple routes that have evolved in Salmonella to protect the pathogen against oxidative stress and suggest that peroxiredoxins play a dominant role in the antioxidant defense during infection. In this study we characterized a third peroxiredoxin-type peroxidase, Tpx. Surprisingly, a simple tpx mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium) was more susceptible to exogenous H2O2 than the wild type (WT). The mutant grew less well in activated macrophages and showed a reduced peroxidase activity toward H2O2.  相似文献   
10.
Clinical investigations of an FGFR4 germline polymorphism, resulting in substitution of glycine by arginine at codon 388 (G388 to R388), have shown a correlation between FGFR4 R388 and aggressive disease progression in cancer patients. Here, we studied the differential effects of the two FGFR4 isotypes on cellular signalling and motility in the MDA-MB-231 human breast cancer cell model. cDNA array analysis showed the ability of FGFR4 G388 to suppress expression of specific genes involved in invasiveness and motility. Further investigations concentrating on cell signalling and motility revealed an abrogation of phosphatidylinositol-3-kinase-dependent LPA-induced Akt activation and cell migration due to downregulation of the LPA receptor Edg-2 in FGFR4 G388-expressing MDA-MB-231 cells. Moreover, FGFR4 G388 expression attenuated the invasivity of the breast cancer cell line and decreased small Rho GTPase activity. We conclude that FGFR4 G388 suppresses cell motility of invasive breast cancer cells by altering signalling pathways and the expression of genes that are required for metastasis. Therefore, the positive effect of FGFR4 R388 on disease progression appears to result from a loss of the tumour suppressor activity displayed by FGFR4 G388 rather than the acquisition or enhancement of oncogenic potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号