首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2002年   3篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
2.
Post-translational modification of histones is a central aspect of gene regulation. Emerging data indicate that modification at one site can influence modification of a second site. As one example, histone H3 phosphorylation at serine 10 (Ser(10)) facilitates acetylation of lysine 14 (Lys(14)) by Gcn5 in vitro (, ). In vivo, phosphorylation of H3 precedes acetylation at certain promoters. Whether H3 phosphorylation globally affects acetylation, or whether it affects all acetylation sites in H3 equally, is not known. We have taken a genetic approach to this question by mutating Ser(10) in H3 to fix either a negative or a neutral charge at this position, followed by analysis of the acetylation states of the mutant histones using site-specific antibodies. Surprisingly, we find that conversion of Ser(10) to glutamate (S10E) or aspartate (S10D) causes almost complete loss of H3 acetylation at lysine 9 (Lys(9)) in vivo. Acetylation of Lys(9) is also significantly reduced in cells bearing mutations in the Glc7 phosphatase that increase H3 phosphorylation levels. Mutation of Ser(10) in H3 and the concomitant loss of Lys(9) acetylation has minimal effects on expression of a Gcn5-dependent reporter gene. However, synergistic growth defects are observed upon loss of GCN5 in cells bearing H3 Ser(10) mutations that are reminiscent of delays in G(2)/M progression caused by combined loss of GCN5 and acetylation site mutations. Together these results demonstrate that H3 phosphorylation directly causes site-specific and opposite changes in acetylation levels of two residues within this histone, Lys(9) and Lys(14), and they highlight the importance of these histone modifications to normal cell functions.  相似文献   
3.
This paper deals with the impact force during foot-ground impact activities such as the running. A previously developed model is used for this study. The model is a lumped-parameter one consisting of four masses connected to each other via linear springs and viscous dampers. A shoe-specific nonlinear function is used for representation of the ground reaction force. The authors have previously showed that the previous version of the model as well as its simulation is incorrect. This paper slightly modifies the previous model so as it is able to produce results in agreement with the experiments. Then, the modified model is simulated for two typical shoe types. A parametric study is also conducted. The parametric study concerns with the effects of masses, mass ratios, stiffness constants, and damping coefficients on the dynamics of the impact. It is shown that the impact forces increase as the rigid and wobbling masses increase. However, the increase in the impact forces is not the same for all the masses. It is found that the impact force increases as the touchdown velocities increase. Simulations imply that the variations of the damping coefficients result in larger variations of the impact force compared to the stiffness. The effect of the variation of gravity on the simulated impact force is also explored. It is concluded that both the first and the second peaks of the impact force are increased with gravity. An in-depth discussion is included to compare results of the current paper with results of other investigators.  相似文献   
4.
A series of twenty two derivatives of 3-(1-alkyl/aminoalkyl-3-vinyl-piperidin-4-yl)-1-(quinolin-4-yl)-propan-1-one and their 2-methylene derivatives were synthesized from naturally abundant cinchonine (I). Tartarate salts of these compounds were prepared and evaluated for spermicidal activity. The most active compounds (24, 27, 34, 36, and 38) showing potent spermicidal activity were further evaluated against different strains of Trichomonas vaginalis, for antimicrobial activity, in HeLa cell lines for cytotoxicity and against Lactobacillus jensenii for eco-safety. The tartarate of 3-(1-pentyl-3-vinyl-piperidin-4-yl)-1-(quinolin-4-yl)-propan-1-one (27) was found to be more active than N-9 in spermicidal activity.  相似文献   
5.

Background

The aim of this study was to assess the feasibility of injury specific home safety investigation and to examine the home safety status focused on burn related safety in a rural population in the North-West of Iran.

Methods

A cross-sectional study was conducted on 265 rural households of rural Meshkinshahr, Iran. Cluster sampling method was used in 38 clusters with 7 households in each cluster. Clusters were selected on a probability proportional to size (PPS) basis using the available health census database called D-Tarh. Data were analyzed using the statistical software package STATA 8.

Results

Possible risks were explored in fields of house structure; cooking and eating attitudes and behaviors; cooking appliances, specific appliances such as picnic gas burners, valors (traditional heaters), samovars (traditional water boilers), and air-heating appliances. Many safety concerns were explored needing to draw the attention of researchers and public health policy makers.

Conclusion

Injury specific home safety surveys are useful and may provide useful information for safety promotion interventions.  相似文献   
6.
These studies relate to a working hypothesis that glycogen storage is facilitated in resting muscle by inhibiting glycolysis via inhibition of LDH, AK, and PFK-1 by ascorbate; when muscle is active, these isozymes combine with muscle proteins and are released and protected from inhibition by ascorbate and glycolysis proceeds. Focus in these studies is on the ability of G-actin and aldolase to prevent PFK-1 inhibition by ascorbate. We found that inhibition by ascorbate was PFK-1 concentration dependent; ascorbate does not inhibit above 200 nM PFK-1. We conclude that ascorbate inhibits PFK-1 dimers (and perhaps monomers) but not PFK-1 tetramers. Separation of PFK-1 dimers from tetramers was achieved with centrifugal filter devices and differences in their sensitivity to ascorbate inhibition were demonstrated. Some comparisons are made with attributes of AK inhibitions by ascorbate that, like PFK-1, are also enzyme concentration dependent. Discussions relate findings to cellular infrastructure and the role of ascorbate in glycogen synthesis.  相似文献   
7.
One of the hallmarks of apoptosis is the redistribution of phosphatidylserine (PS) from the inner-to-outer plasma membrane (PM) leaflet, where it functions as a ligand for phagocyte recognition and the suppression of inflammatory responses. The mechanism by which apoptotic cells externalize PS has been assumed to involve “scramblases” that randomize phospholipids across the PM bilayer. These putative activities, however, have not been unequivocally proven to be responsible for the redistribution of lipids. Because elevated cytosolic Ca2+ is critical to this process and is also required for activation of lysosome-PM fusion during membrane repair, we hypothesized that apoptosis could activate a “pseudo”-membrane repair response that results in the fusion of lysosomes with the PM. Using a membrane-specific probe that labels endosomes and lysosomes and fluorescein-labeled annexin 5 that labels PS, we show that the appearance of PS at the cell surface during apoptosis is dependent on the fusion of lysosomes with the PM, a process that is inhibited with the lysosomotrophe, chloroquine. We demonstrate that apoptotic cells evoke a persistent pseudo-membrane repair response that likely redistributes lysosomal-derived PS to the PM outer leaflet that leads to membrane expansion and the formation of apoptotic blebs. Our data suggest that inhibition of lysosome-PM fusion-dependent redistribution of PS that occurs as a result of chemotherapy- and radiotherapy-induced apoptosis will prevent PS-dependent anti-inflammatory responses that preclude the development of tumor- and patient-specific immune responses.There is increasing evidence that damaged plasma membranes (PM)2 trigger an emergency Ca2+-dependent exocytotic repair response that patches the affected area by adding lysosome-derived membranes at the cell surface disruption site (15). Because high cytosolic Ca2+ concentrations trigger lysosome-PM fusion, the elevated cytosolic Ca2+ levels characteristic to apoptotic cells may also evoke a pseudo-repair mechanism that promotes lysosome-PM fusion. Indeed, similar to normal emergency repair responses, apoptosis is characterized by the appearance of organelle proteins and lipids at the PM surface (68). One critical distinction between the apoptotic and physiologic repair processes is the preservation of membrane lipid asymmetry. In normal cells, any perturbation in PS sidedness is corrected by restoration of basal cytosolic [Ca2+], reactivation of the Ca2+-inhibited aminophospholipid translocase (9, 10), and subsequent facilitated transport of PS back to the inner membrane leaflet of the cell. In apoptotic cells, however, persistent high cytosolic [Ca2+] precludes reactivation of the aminophospholipid translocase, and the redistributed PS remains in the outer membrane leaflet (11). The apparent similarities in these processes combined with observations that apoptotic cells express PS at the cell surface prompted us to investigate whether lysosome to PM fusion plays a role in the redistribution of PS during apoptosis.  相似文献   
8.

Background

Pharmacoresistance is a major issue in the treatment of epilepsy. However, the mechanism underlying pharmacoresistance to antiepileptic drugs (AEDs) is still unclear, and few animal models have been established for studying drug resistant epilepsy (DRE). In our study, spontaneous recurrent seizures (SRSs) were investigated by video-EEG monitoring during the entire procedure.

Methods/Principal Findings

In the mouse pilocarpine-induced epilepsy model, we administered levetiracetam (LEV) and valproate (VPA) in sequence. AED-responsive and AED-resistant mice were naturally selected after 7-day treatment of LEV and VPA. Behavioral tests (open field, object exploration, elevated plus maze, and light-dark transition test) and a microRNA microarray test were performed. Among the 37 epileptic mice with SRS, 23 showed significantly fewer SRSs during administration of LEV (n = 16, LEV sensitive (LS) group) or VPA (n = 7, LEV resistant/VPA sensitive (LRVS) group), while 7 epileptic mice did not show any amelioration with either of the AEDs (n = 7, multidrug resistant (MDR) group). On the behavioral assessment, MDR mice displayed distinctive behaviors in the object exploration and elevated plus maze tests, which were not observed in the LS group. Expression of miRNA was altered in LS and MDR groups, and we identified 4 miRNAs (miR-206, miR-374, miR-468, and miR-142-5p), which were differently modulated in the MDR group versus both control and LS groups.

Conclusion

This is the first study to identify a pharmacoresistant subgroup, resistant to 2 AEDs, in the pilocarpine-induced epilepsy model. We hypothesize that modulation of the identified miRNAs may play a key role in developing pharmacoresistance and behavioral alterations in the MDR group.  相似文献   
9.
BackgroundIn past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity.Scope of reviewThe applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems.Major conclusionsIn spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment.General significanceThis review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.  相似文献   
10.
Molecular and Cellular Biochemistry - Novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) causes mild to severe respiratory illness. The early symptoms may be fever, dry...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号