首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   5篇
  2023年   2篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   5篇
  2015年   7篇
  2014年   5篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1995年   4篇
  1994年   1篇
  1990年   2篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有102条查询结果,搜索用时 62 毫秒
1.
2.
3.
The 70-kilodalton heat shock protein (hsp70) family of molecular chaperones, which contains both stress-inducible and normally abundant constitutive members, is highly conserved across distantly related taxa. Analysis of this protein family in individuals from an outbred population of tropical topminnows, Poeciliopsis gracilis, showed that while constitutive hsp70 family members showed no variation in protein isoforms, inducibly synthesized hsp70 was polymorphic. Several species of Poeciliopsis adapted to desert environments exhibited lower levels of inducible hsp70 polymorphism than the tropical species, but constitutive forms were identical to those in P. gracilis, as they were in the confamilial species Gambusia affinis. These differences suggest that inducible and constitutive members of this family are under different evolutionary constraints and may indicate differences in their function within the cell. Also, northern desert species of Poeciliopsis synthesize a subset of the inducible hsp70 isoforms seen in tropical species. This distribution supports the theory that ancestral tropical fish migrated northward and colonized desert streams; the subsequent decrease in variation of inducible hsp70 may have been due to genetic drift or a consequence of adaptation to the desert environment. Higher levels of variability were found when the 30- kilodalton heat shock protein (hsp30) family was analyzed within different strains of two desert species of Poeciliopsis and also in wild-caught individuals of Gambusia affinis. In both cases the distribution of hsp30 isoform diversity was similar to that seen previously with allozyme polymorphisms.   相似文献   
4.
We have explored the possibilities that cell volume is regulated by the status of microtubule assembly and cyclic AMP metabolism and may be coordinated with shape change. Treatment of J774.2 mouse macrophages with colchicine caused rapid microtubule disassembly and was associated with a striking increase (from 15-20 to more than 90 percent) in the proportion of cells with a large protuberance at one pole. This provided a simple experimental system in which shape changes occurred in virtually an entire cell population in suspension. Parallel changes in cell volume could then be quantified by isotope dilution techniques. We found that the shape change caused by colchicine was accompanied by a decrease in cell volume of approximately 20 percent. Nocodozole, but not lumicolchicine, caused identical changes in both cell shape and cell volume. The volume loss was not due to cell lysis nor to inhibition of pinocytosis. The mechanism of volume loss was also examined. Colchicine induced a small but reproducible increase in activity of the ouabain-sensitive Na(+), K(+)-dependent ATPase. However, inhibition of this enzyme/transport system by ouabain did not change cell volume nor did it block the colchicines-induced decrease in volume. One the other hand, SITS (4’acetamido, 4-isothiocyano 2,2’ disulfonic acid stilbene), an inhibitor of anion transport, inhibited the effects of colchicines, thus suggesting a role for an anion transport system in cell volume regulation. Because colchicine is known to activate adenylate cyclase in several systems and because cell shape changes are often induced by hormones that elevate cyclic AMP, we also examined the effects of cyclic AMP on cell volume. Agents that act to increase syclic AMP (cholera toxin, which activates adenylate cyclase; IBMX, and inhibitor of phosphodiesterase; and dibutyryl cyclic AMP) all caused a volume decrease comparable to that of colchicine. To define the effective metabolic pathway, we studied two mutants of J774.2, one deficient in adenylate cyclase and the other exhibiting markedly reduced activity of cyclic AMP-dependent protein kinase. Cholera toxin did not produce a volume change in either mutant. Cyclic AMP produced a decrease in the cyclase-deficient line comparable to that in wild type, but did not cause a volume change in the kinase- deficient line. This analysis established separate roles for cyclic AMP and colchicine. The volume decrease induced by cyclic AMP requires the action of a cyclic AMP-dependent protein kinase. Colchicine, on the other hand, induced a comparable volume change in both mutants and wild type, and thus does not require the kinase.  相似文献   
5.
Physiological leaf spotting, or flecking, is a mild-lesion phenotype observed on the leaves of several commonly used maize (Zea mays) inbred lines and has been anecdotally linked to enhanced broad-spectrum disease resistance. Flecking was assessed in the maize nested association mapping (NAM) population, comprising 4,998 recombinant inbred lines from 25 biparental families, and in an association population, comprising 279 diverse maize inbreds. Joint family linkage analysis was conducted with 7,386 markers in the NAM population. Genome-wide association tests were performed with 26.5 million single-nucleotide polymorphisms (SNPs) in the NAM population and with 246,497 SNPs in the association population, resulting in the identification of 18 and three loci associated with variation in flecking, respectively. Many of the candidate genes colocalizing with associated SNPs are similar to genes that function in plant defense response via cell wall modification, salicylic acid- and jasmonic acid-dependent pathways, redox homeostasis, stress response, and vesicle trafficking/remodeling. Significant positive correlations were found between increased flecking, stronger defense response, increased disease resistance, and increased pest resistance. A nonlinear relationship with total kernel weight also was observed whereby lines with relatively high levels of flecking had, on average, lower total kernel weight. We present evidence suggesting that mild flecking could be used as a selection criterion for breeding programs trying to incorporate broad-spectrum disease resistance.The plant hypersensitive response (HR) is a form of programmed cell death (PCD) characterized by rapid, localized cell death at the point of attempted pathogen penetration, usually resulting in disease resistance (Coll et al., 2011). It is often associated with other responses, including ion fluxes, an oxidative burst, lipid peroxidation, and cell wall fortification (Hammond-Kosack and Jones, 1996). van Doorn et al. (2011) suggested that HR is a type of PCD sharing features with, but distinct from, both vacuolar cell death and necrosis.HR has been associated with resistance to almost every class of pathogen and pest, including bacteria, viruses, fungi, nematodes, insects, and parasitic plants (Wu and Baldwin, 2010), and generally is most effective against biotrophic pathogens, since biotrophs require a long-term feeding relationship with living host cells. It is generally mediated by dominant resistance (R) genes whose activation is triggered by the direct or indirect detection of specific pathogen-derived effector proteins (Bent and Mackey, 2007). R proteins are maintained in their inactive state if their corresponding effector is not present. Mutants in which HR is constitutively active have been identified in many plant species, including maize/corn (Zea mays; Walbot et al., 1983; Johal, 2007), Arabidopsis (Arabidopsis thaliana; Lorrain et al., 2003), barley (Hordeum vulgare; Wolter et al., 1993), and rice (Oryza sativa; Yin et al., 2000).One well-known class of plant mutants spontaneously form lesions (patches of dead or chlorotic cells) in the absence of any obvious injury, stress, or infection to the plant. Since these lesions in some cases resemble HR, they have been termed disease-lesion mimics (Neuffer and Calvert, 1975). These mutants, which we will here collectively term Les mutants, have been studied extensively, especially in maize (Walbot et al., 1983; Johal et al., 1995; Johal, 2007) and Arabidopsis (Coll et al., 2011). While some of these lesion phenotypes are indeed caused by perturbations in the plant defense response (Hu et al., 1996; Rustérucci et al., 2001), some of the genes underlying this mutant class affect various other pathways that cause cell death if their function is perturbed (Johal, 2007). For instance, the Arabidopsis gene acd2 and the maize gene lls1 are defective in chlorophyll degradation (Gray et al., 1997; Mach et al., 2001).We have defined leaf flecking as the mild, genetically determined spotting observed on many maize inbred cultivars (Vontimitta et al., 2015; Fig. 1). The trait is qualitatively and visually similar to, but quantitatively less severe than, Les mutant phenotypes. The distinction between what constitutes a flecking versus a mild Les trait is necessarily somewhat arbitrary, but for our purposes, we have defined any nonproliferating and distinct leaf-spotting phenotype as flecking.Open in a separate windowFigure 1.A, Examples of variation in the flecking phenotype among inbred lines, with severity increasing from left to right (flecking scores in parentheses, from 0 to 4, scored on a scale of 1–10). B, Leaves of the lines nearly isogenic to inbred Mo20W, into which specific indicated dominant Les mutant genes have been introgressed (Rp1-D21 mutation in an H95 inbred background). Photographs were taken in Clayton, North Carolina, 12 weeks after planting. This figure is adapted from Figure 1 of Vontimitta et al. (2015).Leaf flecking is familiar to most corn breeders, appearing in such well-known and widely used lines such as Mo17 (Zehr et al., 1994) and in several other species such as barley (Makepeace et al., 2007), wheat (Triticum aestivum; Nair and Tomar, 2001), and oat (Avena sativa; Ferdinandsen and Winge, 1930). Flecking tends to be more noticeable in inbreds compared with their derived hybrids (M. Goodman and W. Dolezal, personal communication). Anecdotally, it is often thought to be indicative of a constitutive low-level defense response and as a marker for increased disease resistance.In previous work, we and others have defined the genetic architectures associated with resistance to several maize diseases, including southern leaf blight (SLB; causal agent, Cochliobolus heterostrophus), northern leaf blight (NLB; causal agent, Exserohilum turcicum), and gray leaf spot (GLS; causal agent, Cercospora zeae-maydis; Kump et al., 2011; Poland et al., 2011; Wisser et al., 2011; Benson et al., 2015), and with the control of the maize HR (Chintamanani et al., 2010; Chaikam et al., 2011; Olukolu et al., 2013). For much of this work, we used two powerful mapping populations: the maize association population (Flint-Garcia et al., 2005), a collection of 302 diverse inbred lines with low linkage disequilibrium, and the 5,000-line nested association mapping (NAM) population (McMullen et al., 2009), which is made up of 25 200-line recombinant inbred line (RIL) subpopulations derived from crosses between the common parent B73 and 25 diverse inbreds. Using these populations, it is possible to both sample a diverse array of germplasm and map quantitative trait loci (QTLs) precisely, in some cases to the gene level (Tian et al., 2011; Cook et al., 2012; Hung et al., 2012; Larsson et al., 2013; Olukolu et al., 2013; Wang and Balint-Kurti, 2016).A recent study using 300 lines from the maize intermated B73 × Mo17 population advanced intercross line mapping population identified low but moderately significant positive correlations between increased flecking and increased disease resistance and defense response (Vontimitta et al., 2015). Loci associated with variation in flecking were mapped, although these loci did not colocalize with QTLs identified previously for disease resistance and defense response traits (Balint-Kurti et al., 2007, 2008, 2010; Olukolu et al., 2013). In this study, we have extended this work to examine the genetic basis of leaf flecking over a much more diverse set of maize germplasm using a substantially larger population. We mapped loci associated with variation in leaf flecking and identified candidate genes and pathways that may be involved in this phenotype. Additionally, we have examined the correlations between leaf flecking and disease resistance, the hypersensitive defense response, and total kernel weight.  相似文献   
6.
The hypersensitive defence response is found in all higher plants and is characterized by a rapid cell death at the point of pathogen ingress. It is usually associated with pathogen resistance, though, in specific situations, it may have other consequences such as pathogen susceptibility, growth retardation and, over evolutionary timescales, speciation. Due to the potentially severe costs of inappropriate activation, plants employ multiple mechanisms to suppress inappropriate activation of HR and to constrain it after activation. The ubiquity of this response among higher plants despite its costs suggests that it is an extremely effective component of the plant immune system.  相似文献   
7.
The tomato Cf-4 and Cf-9 genes confer resistance to the leaf mould pathogen Cladosporium fulvum and map at a complex locus on the short arm of chromosome 1. It was previously shown that the gene encoding Cf-4, which recognizes the Avr4 avirulence determinant, is one of five tandemly duplicated homologous genes (Hcr9-4s) at this locus. Cf-4 was identified by molecular analysis of rare Cf-4/Cf-9 disease-sensitive recombinants and by complementation analysis. The analysis did not exclude the possibility that an additional gene(s) located distal to Cf-4 may also confer resistance to C. fulvum. We demonstrate that a number of Dissociation-tagged Cf-4 mutants, identified on the basis of their insensitivity to Avr4, are still resistant to infection by C. fulvum race 5. Molecular analysis of 16 Cf-4 mutants, most of which have small chromosomal deletions in this region, suggested the additional resistance specificity is encoded by Hcr9-4E. Hcr9-4E recognizes a novel C. fulvum avirulence determinant that we have designated Avr4E.  相似文献   
8.
Trends in coral cover are widely used to indicate the health of coral reefs but are costly to obtain from field survey over large areas. In situ studies of reflected spectra at the coral surface show that living and recently dead colonies can be distinguished. Here, we investigate whether such spectral differences can be detected using an airborne remote sensing instrument. The Compact Airborne Spectrographic Imager (Itres Research Ltd, Canada) was flown in two configurations: 10 spectral bands with 1-m2 pixels and 6 spectral bands with 0.25-m2 pixels. First, we show that an instrument with 10 spectral bands possesses adequate spectral resolution to distinguish living Porites, living Pocillopora spp., partially dead Porites, recently dead Porites (total colony mortality within 6 months), old dead (>6 months) Porites, Halimeda spp., and coralline red algae when there is no water column to confuse spectra. All substrata were distinguished using fourth-order spectral derivatives around 538 nm and 562 nm. Then, at a shallow site (Tivaru) at Rangiroa Atoll, Tuamotu Archipelago (French Polynesia), we show that live and dead coral can be distinguished from the air to a depth of at least 4 m using first- and fourth-order spectral derivatives between 562–580 nm. However, partially dead and recently dead Porites colonies could not be distinguished from an airborne platform. Spectral differences among substrata are then exploited to predict the cover of reef substrata in ten 25-m2 plots at nearby Motu Nuhi (max depth 8 m). The actual cover in these plots was determined in situ using quadrats with a 0.01-m2 grid. Considerable disparity occurred between field and image-based measures of substrate cover within individual 25-m2 quadrats. At this small scale, disparity, measured as the absolute difference in cover between field and remote-sensing methods, reached 25% in some substrata but was always less than 10% for living coral (99% of which consisted of Porites spp.). At the scale of the reef (all ten 25-m2 quadrats), however, disparities in percent cover between imagery and field data were less than 10% for all substrata and extremely low for some classes (e.g. <3% for living Porites, recently dead Porites and Halimeda). The least accurately estimated substrata were sand and coralline red algae, which were overestimated by absolute values 7.9% and 6.6%, respectively. The precision of sampling was similar for field and remote-sensing methods: field methods required 19 plots to detect a 10% difference in coral cover among three reefs with a statistical power of 95%. Remote-sensing methods required 21 plots. However, it took 1 h to acquire imagery over 92,500 m2 of reef, which represents 3,700 plots of 25 m2 each, compared with 3 days to survey 10 such plots underwater. There were no significant differences in accuracy between 1-m2 and 0.25-m2 image resolutions, suggesting that the advantage of using smaller pixels is offset by reduced spectral information and an increase in noise (noise was observed to be 1.6–1.8 times greater in 0.25-m2 pixels). We show that airborne remote sensing can be used to monitor coral and algal cover over large areas, providing that water is shallow and clear, and that brown fleshy macroalgae are scarce, that depth is known independently (e.g. from sonar survey).  相似文献   
9.
10.

Background  

Primary diagnostic cultures from patients with melioidosis demonstrate variation in colony morphology of the causative organism, Burkholderia pseudomallei. Variable morphology is associated with changes in the expression of a range of putative virulence factors. This study investigated the effect of B. pseudomallei colony variation on survival in the human macrophage cell line U937 and under laboratory conditions simulating conditions within the macrophage milieu. Isogenic colony morphology types II and III were generated from 5 parental type I B. pseudomallei isolates using nutritional limitation. Survival of types II and III were compared with type I for all assays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号