首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  2023年   1篇
  2016年   2篇
  2014年   1篇
  2013年   4篇
  2012年   8篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有33条查询结果,搜索用时 382 毫秒
1.
Liquid–liquid phase separation (LLPS) is a complex physicochemical phenomenon mediated by multivalent transient weak interactions among macromolecules like polymers, proteins, and nucleic acids. It has implications in cellular physiology and disease conditions like cancer and neurodegenerative disorders. Many proteins associated with neurodegenerative disorders like RNA binding protein FUS (FUsed in Sarcoma), alpha-synuclein (α-Syn), TAR DNA binding protein 43 (TDP-43), and tau are shown to undergo LLPS. Recently, the tau protein responsible for Alzheimer's disease (AD) and other tauopathies is shown to phase separate into condensates in vitro and in vivo. The diverse noncovalent interactions among the biomolecules dictate the complex LLPS phenomenon. There are limited chemical tools to modulate protein LLPS which has therapeutic potential for neurodegenerative disorders. We have rationally designed cyclic dipeptide (CDP)-based small-molecule modulators (SMMs) by integrating multiple chemical groups that offer diverse chemical interactions to modulate tau LLPS. Among them, compound 1c effectively inhibits and dissolves Zn-mediated tau LLPS condensates. The SMM also inhibits tau condensate-to-fibril transition (tau aggregation through LLPS). This approach of designing SMMs of LLPS establishes a novel platform that has potential implication for the development of therapeutics for neurodegenerative disorders.  相似文献   
2.
Mycobacterium tuberculosis, the bacterial causative agent of tuberculosis, currently affects millions of people. The emergence of drug-resistant strains makes development of new antibiotics targeting the bacterium a global health priority. Pantothenate kinase, a key enzyme in the universal biosynthesis of the essential cofactor CoA, was targeted in this study to find new tuberculosis drugs. The biochemical characterizations of two new classes of compounds that inhibit pantothenate kinase from M. tuberculosis are described, along with crystal structures of their enzyme-inhibitor complexes. These represent the first crystal structures of this enzyme with engineered inhibitors. Both classes of compounds bind in the active site of the enzyme, overlapping with the binding sites of the natural substrate and product, pantothenate and phosphopantothenate, respectively. One class of compounds also interferes with binding of the cofactor ATP. The complexes were crystallized in two crystal forms, one of which is in a new space group for this enzyme and diffracts to the highest resolution reported for any pantothenate kinase structure. These two crystal forms allowed, for the first time, modeling of the cofactor-binding loop in both open and closed conformations. The structures also show a binding mode of ATP different from that previously reported for the M. tuberculosis enzyme but similar to that in the pantothenate kinases of other organisms.  相似文献   
3.
Thymus is crucial for generation of a diverse repertoire of T cells essential for adaptive immunity. Although thymic epithelial cells (TECs) are crucial for thymopoiesis and T cell generation, how TEC development and function are controlled is poorly understood. We report here that mTOR complex 1 (mTORC1) in TECs plays critical roles in thymopoiesis and thymus function. Acute deletion of mTORC1 in adult mice caused severe thymic involution. TEC-specific deficiency of mTORC1 (mTORC1KO) impaired TEC maturation and function such as decreased expression of thymotropic chemokines, decreased medullary TEC to cortical TEC ratios, and altered thymic architecture, leading to severe thymic atrophy, reduced recruitment of early thymic progenitors, and impaired development of virtually all T-cell lineages. Strikingly, temporal control of IL-17-producing γδT (γδT17) cell differentiation and TCRVγ/δ recombination in fetal thymus is lost in mTORC1KO thymus, leading to elevated γδT17 differentiation and rearranging of fetal specific TCRVγ/δ in adulthood. Thus, mTORC1 is central for TEC development/function and establishment of thymic environment for proper T cell development, and modulating mTORC1 activity can be a strategy for preventing thymic involution/atrophy.  相似文献   
4.

Background

Myelin oligodendrocyte glycoprotein antibody (MOG Ab) associated demyelination represents a subgroup of autoimmune demyelination that is separate from multiple sclerosis and aquaporin 4 IgG-positive NMO, and can have a relapsing course. Unlike NMO and MS, there is a paucity of literature on immunopathology and CSF cytokine/chemokines in MOG Ab associated demyelination.

Aim

To study the differences in immunopathogenesis based on cytokine/chemokine profile in MOG Ab-positive (POS) and -negative (NEG) groups.

Methods

We measured 34 cytokines/chemokines using multiplex immunoassay in CSF collected from paediatric patients with serum MOG Ab POS [acute disseminated encephalomyelitis (ADEM = 8), transverse myelitis (TM = 2) n = 10] and serum MOG Ab NEG (ADEM = 5, TM = 4, n = 9) demyelination. We generated normative data using CSF from 20 non-inflammatory neurological controls.

Results

The CSF cytokine and chemokine levels were higher in both MOG Ab POS and MOG Ab NEG demyelination groups compared to controls. The CSF in MOG Ab POS patients showed predominant elevation of B cell related cytokines/chemokines (CXCL13, APRIL, BAFF and CCL19) as well as some of Th17 related cytokines (IL-6 AND G-CSF) compared to MOG Ab NEG group (all p<0.01). In addition, patients with elevated CSF MOG antibodies had higher CSF CXCL13, CXCL12, CCL19, IL-17A and G-CSF than patients without CSF MOG antibodies.

Conclusion

Our findings suggest that MOG Ab POS patients have a more pronounced CNS inflammatory response with elevation of predominant humoral associated cytokines/chemokines, as well as some Th 17 and neutrophil related cytokines/chemokines suggesting a differential inflammatory pathogenesis associated with MOG antibody seropositivity. This cytokine/chemokine profiling provides new insight into disease pathogenesis, and improves our ability to monitor inflammation and response to treatment. In addition, some of these molecules may represent potential immunomodulatory targets.  相似文献   
5.
Annexins are soluble proteins that can interact with membranes in a Ca2+-dependent manner. Recent studies have shown that they can also undergo Ca2+-independent membrane interactions that are modulated by pH and phospholipid composition. Here, we investigated the structural changes that occurred during Ca2+-independent interaction of annexin B12 with phospholipid vesicles as a function of pH. Electron paramagnetic resonance analysis of a helical hairpin encompassing the D and E helices in the second repeat of the protein showed that this region refolded and formed a continuous amphipathic alpha helix following Ca2+-independent binding to membranes at mildly acidic pH. At pH 4.0, this helix assumed a transmembrane topography, but at pH approximately 5.0-5.5, it was peripheral and approximately parallel to the membrane. The peripheral form was reversibly converted into the transmembrane form by lowering the pH and vice versa. Furthermore, analysis of vesicles incubated with annexin B12 using freeze-fracture electron microscopy methods showed classical intramembrane particles at pH 4.0 but none at pH 5.3. Together, these data raise the possibility that the peripheral-bound form of annexin B12 could act as a kinetic intermediate in the formation of the transmembrane form of the protein.  相似文献   
6.
Electron paramagnetic resonance using site‐directed spin labeling can be used as an approach for determination of protein structures that are difficult to solve by other methods. One important aspect of this approach is the measurement of interlabel distances using the double electron–electron resonance (DEER) method. Interpretation of experimental data could be facilitated by a computational approach to calculation of interlabel distances. We describe an algorithm, PRONOX, for rapid computation of interlabel distances based on calculation of spin label conformer distributions at any site of a protein. The program incorporates features of the label distribution established experimentally, including weighting of favorable conformers of the label. Distances calculated by PRONOX were compared with new DEER distances for amphiphysin and annexin B12 and with published data for FCHo2 (F‐BAR), endophilin, and α‐synuclein, a total of 44 interlabel distances. The program reproduced these distances accurately (r2 = 0.94, slope = 0.98). For 9 of the 11 distances for amphiphysin, PRONOX reproduced the experimental data to within 2.5 Å. The speed and accuracy of PRONOX suggest that the algorithm can be used for fitting to DEER data for determination of protein tertiary structure. © 2011 Wiley Periodicals, Inc. Biopolymers 97: 35–44, 2012.  相似文献   
7.
Amelogenin is a proline‐rich enamel matrix protein known to play an important role in the oriented growth of enamel crystals. Amelogenin self‐assembles to form nanospheres and higher order structures mediated by hydrophobic interactions. This study aims to obtain a better insight into the relationship between primary–secondary structure and self‐assembly of amelogenin by applying computational and biophysical methods. Variable temperature circular dichroism studies indicated that under physiological pH recombinant full‐length porcine amelogenin contains unordered structures in equilibrium with polyproline type II (PPII) structure, the latter being more populated at lower temperatures. Increasing the concentration of rP172 resulted in the promotion of folding to an ordered β‐structured assembly. Isothermal titration calorimetry dilution studies revealed that at all temperatures, self‐assembly is entropically driven due to the hydrophobic effect and the molar heat of assembly (ΔHA) decreases with temperature. Using a computational approach, a profile of domains in the amino acid sequence that have a high propensity to assemble and to have PPII structures has been identified. We conclude that the assembly properties of amelogenin are due to complementarity between the hydrophobic and PPII helix prone regions. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
8.
9.
The t(14;18) translocation involving the Ig heavy chain locus and the BCL-2 gene is the single most common chromosomal translocation in human cancer. Recently we reported in vitro and in vivo chemical probing data indicating that the 150-bp major breakpoint region (Mbr), which contains three breakage subregions (hotspots) (known as peaks I, II, and III), has single-stranded character and hence a non-B DNA conformation. Although we could document the non-B DNA structure formation at the bcl-2 Mbr, the structural studies were limited to chemical probing. Therefore, in the present study, we used multiple methods including circular dichroism to detect the non-B DNA at the bcl-2 Mbr. We established a new gel shift method to detect the altered structure at neutral pH on shorter DNA fragments containing the bcl-2 Mbr and analyzed the fine structural features. We found that the single-stranded region in the non-B DNA structure observed is stable for days and is asymmetric with respect to the Watson and Crick strands. It could be detected by oligomer probing, a bisulfite modification assay, or a P1 nuclease assay. We provide evidence that two different non-B conformations exist at peak I in addition to the single one observed at peak III. Finally we used mutagenesis and base analogue incorporation to show that the non-B DNA structure formation requires Hoogsteen pairing. These findings place major constraints on the location and nature of the non-B conformations assumed at peaks I and III of the bcl-2 Mbr.  相似文献   
10.
Aromatic peroxygenase (APO) from the basidiomycetous mushroom Agrocybe aegerita (AaeAPO) and microperoxidases (MPs) obtained from cytochrome c exhibit a broad substrate spectrum including hydroxylation of selected aromatic substrates, demethylation and epoxidation by means of hydrogen peroxide. It overlaps with that of cytochrome P450 (P450), making MPs and APOs to alternate recognition elements in biosensors for the detection of typical P450 substrates. Here, we discuss recently developed approaches using microperoxidases and peroxygenases in view of their potential to supplement P450 enzymes as recognition elements in biosensors for aromatic compounds. Starting as early as the 1970s, the direct electron transfer between electrodes and the heme group of heme peptides called microperoxidases has been used as a model of oxidoreductases. These MP-modified electrodes are used as hydrogen peroxide detectors based on the catalytic current generated by electrically contacted microperoxidase molecules. A similar catalytic reaction has been obtained for the electrode-immobilised heme protein AaeAPO. However, up to now, no MP-based sensors for substrates have been described. In this review, we present biosensors which indicate 4-nitrophenol, aniline, naphthalene and p-aminophenol based on the peroxide-dependent substrate conversion by electrode-immobilised MP and AaeAPO. In these enzyme electrodes, the signal is generated by the conversion of all substrates, thus representing in complex media an overall parameter. The performance of these sensors and their further development are discussed in comparison with P450-based electrodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号