首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有45条查询结果,搜索用时 250 毫秒
1.
Two in vitro culture systems were used in order to identify Xenopus primordial germ cells in the early stages of their migration through the endodermal mass. For this study, whole endodermal mass and dissociated endodermal cells were cultured on fibronectin substrates. In the early stages of the explantation, each system used permits the spotting of particular cells among somatic endodermal cells. These cells exhibit an elongated shape, they present random locomotion and they move on the substrate by elongation-contraction. Ultrastructural studies of these cells confirm their germinal quality.  相似文献   
2.
Some species of the paleotropical tree genus Macaranga (Euphorbiaceae) live in close association with ants. The genus comprises the full range of species from those not regularly inhabited by ants to obligate myrmecophytes. In Malaysia (Peninsular and Borneo) 23 of the 52 species are known to be ant-associated (44%). The simplest structural adaptation of plants to attract ants are extrafloral nectaries. We studied the distribution of extrafloral nectaries in the genus Macaranga to assess the significance of this character as a possible predisposition for the evolution of obligate myrmecophytism. All species have marginal glands on the leaves. However, only the glands of non- myrmecophytic species function as nectaries, whereas liquids secreted by these glands in myrmecophytic species did not contain sugar. Some non-myrmecophytic Macaranga and transitional Macaranga species in addition have extrafloral nectaries on the leaf blade near the petiole insertion. All obligatorily myrmecophytic Macaranga species, however, lack additional glands on the lamina. The non-myrmecophytic species are visited by a variety of different ant species, whereas myrmecophytic Macaranga are associated only with one specific ant-partner. Since these ants keep scale insects in the hollow stems, reduction of nectary production in ant-inhabited Macaranga seems to be biologically significant. We interpret this as a means of (a) saving the assimilates and (b) stabilization of maintenance of the association's specificity. Competition with other ant species for food rewards is avoided and thereby danger of weakening the protective function of the obligate ant- partner for the plant is reduced. A comparison with other euphorb species living in the same habitats as Macaranga showed that in genera in which extrafloral nectaries are widespread, no myrmecophytes have evolved. Possession of extrafloral nectaries does not appear to be essential for the development of symbiotic ant-plant interactions. Other predispositions such as nesting space might have played a more important role.  相似文献   
3.
Abstract 1. Habitat fragmentation is considered one of the major threats to invertebrate diversity in semi‐natural grassland. However, the effects of habitat fragmentation through mowing on the rich insect fauna of these grasslands have not been sufficiently investigated and experiments are especially rare. 2. We studied the impact of small‐scale grassland fragmentation on orthopterans over 7 years in an experiment which allowed us to additionally investigate the effect of frequent mowing on Orthoptera communities. 3. Overall, Orthoptera density and species richness increased over time. This was likely a result of increased small‐scale habitat heterogeneity and the provision of a short‐turf habitat suitable for xerophilous species. The fragmentation affected orthopteran density and species composition but not species richness whose response lagged behind the changes in abundance. 4. Responses differed between suborders. Ensifera density was higher in fragment than in control plots. Caelifera density did not differ between fragment and control plots. The mown matrix was an unsuitable habitat for most of the species, particularly within the Ensifera. 5. Our experiment shows that even small‐scale fragmentation can affect Orthopteran communities and that the effects became more pronounced over time. As the mown matrix was unsuitable for many Ensifera species, they may go locally extinct when large areas are mown simultaneously.  相似文献   
4.
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO2) from fossil fuels, methane (CH4) and nitrous oxide (N2O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg Ceq), and in the unburned system (559 out of 748 kg Ceq). Although nitrogen fertilizer emissions are large, 111 kg Ceq ha?1 yr?1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg Ceq ha?1 yr?1). and BC (1536 kg Ceq ha?1 yr?1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha?1 yr?1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.  相似文献   
5.
The most conspicuous and species-rich ant-plant mutualism in the Malesian region is found in the important pioneer tree genus Macaranga , yet little is known about the identities or community ecology of the species involved. Our studies have revealed a far more complex system than previously thought. This paper presents the first extensive investigation in the whole distribution area of myrmecophytic Macaranga. All ant-inhabited species were restricted to the moister parts of SE Asia: Peninsular Malaysia, South and East Thailand, Sumatra and Borneo. We found a rather strict and similar altitudinal zonation of myrmecophytic Macaranga species in all regions. Here we focus on the majority of the 19 Macaranga species obligatorily associated with ants of the genus Crematogaster. We identified a total of 2163 ant queens which belonged to at least eight (morpho)species of the small subgenus Decacrema as well as to one non-Decacrema (probably from Atopogyne ). The ant species were not randomly distributed among the Macaranga species but distinct patterns of associations emerged. Despite common sympatric distribution of Macaranga species, in most cases a surprisingly high specificity of ant colonization was maintained which was, however, often not species-specific but groups of certain plant species with identical ant partners could be found. These colonization patterns usually but not always mirror existing taxonomic sections within the genus Macaranga. Possible mechanisms of specificity are discussed. The results are compared with other ant-plant mutualisms.  相似文献   
6.
The major pest of maize in Mediterranean Europe, the stem borer Sesamia nonagrioides (Lefèbvre) (Lepidoptera: Noctuidae), has a fragmented distribution, north and south of the Sahara. The present study aimed: (1) to clarify the uncertain taxonomic status of the Palearctic and sub‐Saharan populations which were first considered as different species and later on as subspecies (Sesamia nonagrioides nonagrioides and Sesamia nonagrioides botanephaga) and (2) to investigate the origin of the Palearctic population which extends from Spain to Iran, outside what is considered typical for this mainly tropical genus. We reconstructed the evolutionary history of both populations using one nuclear and two mitochondrial genes. The sub‐Saharan taxon was fragmented in two isolated populations (West and East) whose mitochondrial genes were distant by 2.3%. The Palearctic population was included in the East African clade and its genes were close or identical to those of a population from Central Ethiopia, where the species was discovered for the first time. Similarly, in Africa, the alleles of the nuclear gene were distributed mainly in two West and East clades, whereas some Palearctic alleles belonged to the West clade. The Palearctic population originated therefore from East and West Africa and is the progeny of the cross between these two African populations. The main species concepts were in agreement, leading to the conclusion that the three populations are still conspecific. In the surveyed regions, the species therefore does not include two subspecies but three isolated populations. The Palearctic population suffered from severe bottlenecks that resulted in the fixation of one East African mitochondrial genome and the large reduction in its genetic diversity compared to the African populations. The data suggest that natural colonization of the Palearctic region was more plausible than human introduction. The allelic distribution of the Palearctic population was similar to that of species that survived the last glaciation. It is concluded that the African populations expanded during the last interglacial, crossed the Sahara and mixed in North Africa where fixation of the East mitochondrial genome occurred. The species then colonized Europe westward through only one eastern entrance. The coalescent‐based estimate of the time to the ancestor of the Palearctic population was 108 000 years, which is consistent with this scenario. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 904–922.  相似文献   
7.
8.
9.
The small subunit rRNA gene sequences of the karyorelictean ciliates, Loxodes striatus and Protocruzia sp., and the heterotrichian ciliates, Climacostomum virens and Eufolliculina uhligi , were used to test the evolution of nuclear dualism in the Phylum Ciliophora. Phylogenies derived using a least squares distance method, neighbour joining, and maximum parsimony demonstrate that the karyorelictean ciliates sensu Small and Lynn, 1985 do not form a monophyletic group. However, Loxodes and the heterotrich ciliates form the first branch in the ciliate lineage, and Protocruzia branches, in distance methods, basal to the spirotrich lineage. It is proposed that Protocruzia be removed from the Class Karyorelictea, and placed in closer taxonomic association with the spirotrich lineage. The distribution of nuclear division types along the phylogenetic tree is consistent with the notion that macronuclei incapable of division represent a derived rather than a primitive or "karyorelictid" character trait.  相似文献   
10.
Abstract: Cambrian trilobites mainly lived on the sea floor, and up till now few, if any, unequivocally planktonic trilobites have been reported from earlier than the Ordovician. The late Cambrian (Furongian) to late Ordovician olenids are a distinctive group of benthic (sea‐floor dwelling) or nekto‐benthic trilobites. Here we show, however, that one recently described, miniaturized and very spiny olenid species, Ctenopyge ceciliae must have been planktonic (passively drifting or feebly swimming in the upper waters of the sea). This interpretation is based not only upon body form but also on the analysis of its visual system and may be one of the earliest records of the planktonic realm being invaded by trilobites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号