首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2009年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Previous behavioural studies using inbred lines have suggested that the gene ( Abpa ) for the alpha subunit of salivary androgen-binding protein (ABP) plays a role in prezygotic isolation between house mouse Mus musculus subspecies. We tested this hypothesis in animals from wild allopatric (121 individuals from four samples) and parapatric (320 animals from 15 samples) populations sampled on the Czech–Bavarian transect across the hybrid zone between M. m. domesticus and M. m. musculus . The study did not reveal a consistent statistically significant trend of homosubspecific preferences in individual allopatric and parapatric populations. Nonetheless, the whole pattern of preference was skewed toward homosubspecific preference mostly on the M. m. musculus side of the hybrid zone. The pattern of homosubspecific preferences was stronger for the time spent sniffing than it was for the first choice of the signal (the ratio of homosubspecific vs. heterosubspecific preferences for both sexes was 6 : 2 in allopatric and 21 : 9 in parapatric populations, while the same rates were 4 : 4 and 16 : 14 for the first choice). To the extent that Y-maze tests reflect preference under wild conditions, we suggest that this slight preference may not in itself be sufficient to impede gene flow between the two subspecies and thus act as a reproductive barrier. ABP most probably participates in a complex system of subspecies-specific recognition in the hybrid zone, but the picture is far too complex at this time to allow a conclusive evaluation of the importance of this role.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 349–361.  相似文献   
2.
Various genetic and physiological aspects of resistance of Lycopersicon spp. to Oidium neolycopersici have been reported, but limited information is available on the molecular background of the plant–pathogen interaction. This article reports the changes in nitric oxide (NO) production in three Lycopersicon spp. genotypes which show different levels of resistance to tomato powdery mildew. NO production was determined in plant leaf extracts of L. esculentum cv. Amateur (susceptible), L. chmielewskii (moderately resistant) and L. hirsutum f. glabratum (highly resistant) by the oxyhaemoglobin method during 216 h post-inoculation. A specific, two-phase increase in NO production was observed in the extracts of infected leaves of moderately and highly resistant genotypes. Moreover, transmission of a systemic response throughout the plant was observed as an increase in NO production within tissues of uninoculated leaves. The results suggest that arginine-dependent enzyme activity was probably the main source of NO in tomato tissues, which was inhibited by competitive reversible and irreversible inhibitors of animal NO synthase, but not by a plant nitrate reductase inhibitor. In resistant tomato genotypes, increased NO production was localized in infected tissues by confocal laser scanning microscopy using the fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. NO production observed in the extracts from pathogen conidia, together with elevated NO production localized in developing pathogen hyphae, demonstrates a complex role of NO in plant–pathogen interactions. Our results are discussed with regard to a possible role of increased NO production in pathogens during pathogenesis, as well as local and systemic plant defence mechanisms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号