首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2015年   1篇
  2011年   1篇
  2008年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Around 20–30% of ovarian cancer patients exhibit chemoresistance, but there are currently no methods to predict whether a patient will respond to chemotherapy. Here, we discovered that chemoresistant ovarian cancer cells exhibit enhanced survival in a quiescent state upon experiencing the stress of physical confinement. When immobilized in stiff silica gels, most ovarian cancer cells die within days, but surviving cells exhibit hallmarks of single-cell dormancy. Upon extraction from gels, the cells resume proliferation but demonstrate enhanced viability upon reimmobilization, indicating that initial immobilization selects for cells with a higher propensity to enter dormancy. RNA-seq analysis of the extracted cells shows they have signaling responses similar to cells surviving cisplatin treatment, and in comparison to chemoresistant patient cohorts, they share differentially expressed genes that are associated with platinum-resistance pathways. Furthermore, these extracted cells demonstrate greater resistance to cisplatin and paclitaxel, despite being proliferative. In contrast, serum starvation and hypoxia could not effectively select for chemoresistant cells upon removal of the environmental stress. These findings demonstrate that ovarian cancer chemoresistance and the ability to enter dormancy are linked, and immobilization rapidly distinguishes chemoresistant cells. This platform could be suitable for mechanistic studies, drug development, or as a clinical diagnostic tool.  相似文献   
2.
Background

More than 70 cytoplasmic male sterility (CMS) types have been identified in Helianthus, but only for less than half of them, research of mitochondrial organization has been conducted. Moreover, complete mitochondrion sequences have only been published for two CMS sources – PET1 and PET2. It has been demonstrated that other sunflower CMS sources like MAX1, significantly differ from the PET1 and PET2 types. However, possible molecular causes for the CMS induction by MAX1 have not yet been proposed. In the present study, we have investigated structural changes in the mitochondrial genome of HA89 (MAX1) CMS sunflower line in comparison to the fertile mitochondrial genome.

Results

Eight significant major reorganization events have been determined in HA89 (MAX1) mtDNA: one 110 kb inverted region, four deletions of 439 bp, 978 bp, 3183 bp and 14,296 bp, respectively, and three insertions of 1999 bp, 5272 bp and 6583 bp. The rearrangements have led to functional changes in the mitochondrial genome of HA89 (MAX1) resulting in the complete elimination of orf777 and the appearance of new ORFs - orf306, orf480, orf645 and orf1287. Aligning the mtDNA of the CMS sources PET1 and PET2 with MAX1 we found some common reorganization features in their mitochondrial genome sequences.

Conclusion

The new open reading frame orf1287, representing a chimeric atp6 gene, may play a key role in MAX1 CMS phenotype formation in sunflower, while the contribution of other mitochondrial reorganizations seems to appear negligible for the CMS development.

  相似文献   
3.
Local delivery of viral vectors can enhance the efficacy of therapies by selectively affecting necessary tissues and reducing the required vector dose. Pluronic F127 is a thermosensitive polymer that undergoes a solution–gelation (sol–gel) transition as temperature increases and can deliver vectors without damaging them. While pluronics can be spread over large areas, such as the surface of an organ, before gelation, they lack sufficient adhesivity to remain attached to some tissues, such as the surface of the heart or mucosal surfaces. Here, we utilized blends of pluronic F127 and polycarbophil (PCB), a mucoadhesive agent, to provide the necessary adhesivity for local delivery of viral vectors to the cardiac muscle. The effects of PCB concentration on adhesive properties, sol–gel temperature transition and cytocompatibility were evaluated. Rheological studies showed that PCB decreased the sol–gel transition temperature at concentrations >1% and increased the adhesive properties of the gel. Furthermore, these gels were able to deliver viral vectors and transduce cells in vitro and in vivo in a neonatal mouse apical resection model. These gels could be a useful platform for delivering viral vectors over the surface of organs where increased adhesivity is required.  相似文献   
4.
Recent advances in human embryonic stem cell (hESC) biology now offer an alternative cell source for tissue engineers, as these cells are capable of proliferating indefinitely and differentiating to many clinically relevant cell types. Novel culture methods capable of exerting spatial and temporal control over the stem cell microenvironment allow for more efficient expansion of hESCs, and significant advances have been made toward improving our understanding of the biophysical and biochemical cues that direct stem cell fate choices. Effective production of lineage specific progenitors or terminally differentiated cells enables researchers to incorporate hESC derivatives into engineered tissue constructs. Here, we describe current efforts using hESCs as a cell source for tissue engineering applications, highlighting potential advantages of hESCs over current practices as well as challenges which must be overcome.  相似文献   
5.
6.
Plant Molecular Biology - CRISPR-edited variants at the 3′-end of OsLOGL5's coding sequence (CDS), significantly increased rice grain yield under well-watered, drought, normal nitrogen,...  相似文献   
7.
We report an approach to the fabrication and selective functionalization of amine-reactive polymer multilayers on the surfaces of 3-D polyurethane-based microwell cell culture arrays. "Reactive" layer-by-layer assembly of multilayers using branched polyethyleneimine (BPEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4'-dimethylazlactone) (PVDMA) yielded film-coated microwell arrays that could be chemically functionalized postfabrication by treatment with different amine-functionalized macromolecules or small molecule primary amines. Treatment of film-coated arrays with the small molecule amine d-glucamine resulted in microwell surfaces that resisted the adhesion and proliferation of mammalian fibroblast cells in vitro. These and other experiments demonstrated that it was possible to functionalize different structural features of these arrays in a spatially resolved manner to create dual-functionalized substrates (e.g., to create arrays having either (i) azlactone-functionalized wells, with regions between the wells functionalized with glucamine or (ii) substrates with spatially resolved regions of two different cationic polymers). In particular, spatial control over glucamine functionalization yielded 3-D substrates that could be used to confine cell attachment and growth to microwells for periods of up to 28 days and support the 3-D culture of arrays of cuboidal cell clusters. These approaches to dual functionalization could prove useful for the long-term culture and maintenance of cell types for which the presentation of specific and chemically well-defined 3-D culture environments is required for control over cell growth, differentiation, and other important behaviors. More generally, our approach provides methods for the straightforward chemical functionalization of otherwise unreactive topographically patterned substrates that could prove to be useful in a range of other fundamental and applied contexts.  相似文献   
8.
Before gene therapy can be used in clinical settings, safe and efficient DNA delivery systems must be developed to overcome a range of extra- and intracellular transport barriers. As a step toward the development of a modular, multifunctional gene delivery system to overcome these diverse barriers, we have developed a family of linear-dendritic "hybrid" polymers which contain functionalities for tissue targeting, minimization of nonspecific interactions, endosomal buffering, and DNA binding. Here, we demonstrate the rapid three-step, room-temperature, aqueous synthesis of hybrid polymers, as well as the functionalization of these polymers with a peptide targeting ligand that specifically binds to glucose-regulated protein-78 kDa (GRP-78), a clinically relevant tumor antigen identified in human cancer patients. These polymer systems can condense plasmid DNA into small nanoparticle structures (<210 nm) and transfect cells expressing GRP-78 with efficiencies that exceed that of branched polyethylenimine (bPEI), one of the best commercially available polymers for in vitro transfections. The synthetic approach described here may be useful for the rapid synthesis and optimization of polymer gene delivery systems bearing a range of diverse functional domains, and the specific GRP-78-targeted systems developed in this study may potentially have clinical applications in cancer gene therapy.  相似文献   
9.
Russian Journal of Genetics - The polymorphism of microsatellite loci of chloroplast genome in six Helianthus species and 46 lines of cultivated sunflower H. annuus (17 CMS lines and 29 Rf-lines)...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号