首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2005年   1篇
  2003年   1篇
  1992年   1篇
  1989年   1篇
  1984年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有7条查询结果,搜索用时 108 毫秒
1
1.
Using the technique of Computer Assisted Tomography applied to gamma ray attenuation measurement of soil water content, it has been shown that the assumption of uniform absorption of soil water along a plant root is clearly erroneous and that drawdown distance is a function of time. The results suggest that the plant sequentially removes water from the top to the bottom of the root as soil hydraulic resistance becomes a major limiting factor in the upper layers, even at the high soil water potential (–0.30 MPa) used.  相似文献   
2.
Application of computer assisted tomography to gamma and X-ray attenuation measurements and Na+-LIX microelectrodes were used to determine the spatial distributions of soil water content and Na+ concentrations respectively near single roots of eighteen day old lupin and radish plants. These quantities were monitored at root depths of 3, 6 and 9 cm and at zero, 2, 4, 6, and 8 hour intervals from the diurnal commencement of transpiration. The plants were subjected to two levels of transpirational demand and five Na+ soil solution concentration levels. Water extraction rates for the lupin and radish roots increased continuously with time but were substantially reduced with increasing Na+ concentration in the treatment. Water uptake was uniform along the length of the essentially constant diameter lupin roots but decreased along the tapering radish roots as the diameter and hence the surface area per unit length of the roots decreased. The accumulation of Na+ at the root surfaces of both plants increased gradually with time in a near linear fashion and was slightly higher under the higher transpiration demand. These increases were not exponential as would be expected with non-absorption by the roots and this is considered to be due to back diffusion at the relatively high water contents used. At these water contents matric potentials had a much smaller influence on transpiration than osmotic potentials. The relationships between leaf water potentials (Ψ1) and osmotic potentials at the root surfaces were linear with the decreases in Ψ1 almost exactly reflecting the decreases in Ψπ indicating rapid plant adjustment. Leaf water potentials decreased progressively with time and the relationships between leaf water potential and the transpiration rate were also linear supporting the suggestion of constant plant resistances at any given concentration.  相似文献   
3.
A microculture chamber has been developed which enables specific fungal hyphae to be followed in their living state before being processed and longitudinally sectioned for electron microscopy. Photomicrographs and their corresponding electron micrographs are presented which illustrate the effectiveness of this approach. Examples of the application of the method are presented.  相似文献   
4.
Summary The construction and operation of a novel tensiometer-potometer system capable of measuring the xylem water potential and flux of water into the root is described. The validity of its measurements has been illustrated and it was shown that a unique linear relationship exists between the resistance to water flow and the water status of the root tissues.  相似文献   
5.
The effects of four rates (0, 5, 10 and 20%, wt/wt) of fly ash amendment in a sandy soil (top 100–120 mm) on soil properties, turf (Cynodon dactylon (L.) Pers., cv. Wintergreen) water relations, growth and colour, were assessed during 84 days of irrigation treatments (irrigated daily, every 3rd day, or every 4th day) imposed during summer in a Mediterranean-type climate. In plots irrigated at 40% of net evaporation summed and applied every 3rd day: (i) soil water contents were 14–33% higher in the fly ash amended soil zone when compared to values in plots with non-amended soil; (ii) soil water content below the root zone (i.e., 1500 mm) during that period remained low (being only 1–2% above the permanent wilting point), indicating minimal, if any, deep drainage. Extractable soil P was 2.0- to 3.8-fold higher in the fly ash amended soil compared to non-amended soil. By contrast extractable P was 1.7- to 2.1-fold higher in the soil 100–500 mm below the surface in non-amended plots, compared with fly ash amended plots. Irrigation at 40% replacement of net evaporation summed and applied every 3rd day did not adversely impact on turf growth or colour, when compared to plots irrigated daily, irrespective of fly ash treatments. However, extending irrigations (at 40% of net evaporation) to every 4th day reduced turf growth and colour, but the turf recovered fully from the mild water stress within 21 days of being irrigated daily at 100% replacement of net evaporation. Therefore, 40% replacement of net evaporation summed and applied every 3rd day was a suitable watering schedule for maintenance of turf, with minimal risks of deep drainage.  相似文献   
6.
Soil properties and turf growth on a sandy soil amended with fly ash   总被引:6,自引:0,他引:6  
Pathan  S.M.  Aylmore  L. A. G.  Colmer  T. D. 《Plant and Soil》2003,256(1):103-114
Field lysimeters of a sandy soil were amended to a depth of 100 mm with four rates (0, 5, 10 and 20%, wt/wt) of fly ash, and effects on soil water content, nutrient leaching, turf growth and nutrition, and uptake of trace elements by turf were assessed. Measurements were taken for 70 days for lysimeters either planted with rhizomes of Cynodon dactylon(L.) Pers., cv. `Wintergreen', or left bare. When irrigated daily, soil water content increased progressively with increasing rates of fly ash and leachate volumes were decreased by 17–52% for lysimeters containing fly ash amended soil. Fertiliser was applied equivalent to 28.4 g N m–2 and 10.3 g P m–2 for the entire 70 days (including pre-plant application). Macronutrient concentrations in leaf tissue were within levels regarded as sufficient. Total dry mass (root plus shoot) decreased when fertiliser application rates were reduced by 25%, irrespective of fly ash treatment. In `bare' lysimeters containing fly ash amended soil, cumulative leaching of NO3 , NH4 +and P were 0.32–0.88 of the values in non-amended soil. When planted with turf, leaching of those nutrients was minimal (equivalent to 3% of total N applied) and leaching loses did not differ among fly ash rates. Extractable soil P levels were increased 2.5–4.5-fold in the fly ash amended zone, compared with non-amended soil. Root mass in the top 100 mm was 1.2–1.5-fold larger for turf in fly ash amended soil, compared to non-amended soil. The Se concentrations were higher in leaf tissue grown in fly ash amended soil (being at most 0.63 g g–1), but there was no effect of fly ash amended soil on As, Ba, B, Cd, Co, Cr, Cu, Pb, Hg, Mn, Ni, Ag or Zn in leaf tissues. Thus, fly ash amendment may be a suitable management option for turf culture on sandy soils, since fly ash improved soil water holding capacity and root growth in the amended zone.  相似文献   
7.
Summary The usefulness of a tensiometer-potometer system in investigations of water flow in the, vicinity of a plant root has been demonstrated. Measurements were made of the root-soil interface water potential, xylem potential and the distribution of water fluxes and root resistance along the length of a maize root. For a root growing in sand, the rhizosphere resistance was 3.5 to 8 times the radial resistance of the root at average rhizosphere, potentials of –250 m bars. For a root growing in sandy loam such rhizosphere resistance was not achieved until the average rhizosphere potential is approximately –2 bars.Contribution from the Department of Soil Science and Plant Nutrition, University of Western Australia, Nedlands, Western Australia 6009.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号