首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   4篇
  2021年   2篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   10篇
  2013年   5篇
  2012年   13篇
  2011年   7篇
  2010年   8篇
  2009年   4篇
  2008年   6篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   6篇
  1987年   4篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有121条查询结果,搜索用时 187 毫秒
1.
Organisms used as model genomics systems are maintained as isogenic strains, yet evidence of sequence differences between independently maintained wild-type stocks has been substantiated by whole-genome resequencing data and strain-specific phenotypes. Sequence differences may arise from replication errors, transposon mobilization, meiotic gene conversion, or environmental or chemical assault on the genome. Low frequency alleles or mutations with modest effects on phenotypes can contribute to natural variation, and it has proven possible for such sequences to become fixed by adapted evolutionary enrichment and identified by resequencing. Our objective was to identify and analyze single locus genetic defects leading to RNAi resistance in isogenic strains of Caenorhabditis elegans. In so doing, we uncovered a mutation that arose de novo in an existing strain, which initially frustrated our phenotypic analysis. We also report experimental, environmental, and genetic conditions that can complicate phenotypic analysis of RNAi pathway defects. These observations highlight the potential for unanticipated mutations, coupled with genetic and environmental phenomena, to enhance or suppress the effects of known mutations and cause variation between wild-type strains.  相似文献   
2.
3.
TMEM41B and VMP1 are integral membrane proteins of the endoplasmic reticulum (ER) and regulate the formation of autophagosomes, lipid droplets (LDs), and lipoproteins. Recently, TMEM41B was identified as a crucial host factor for infection by all coronaviruses and flaviviruses. The molecular function of TMEM41B and VMP1, which belong to a large evolutionarily conserved family, remains elusive. Here, we show that TMEM41B and VMP1 are phospholipid scramblases whose deficiency impairs the normal cellular distribution of cholesterol and phosphatidylserine. Their mechanism of action on LD formation is likely to be different from that of seipin. Their role in maintaining cellular phosphatidylserine and cholesterol homeostasis may partially explain their requirement for viral infection. Our results suggest that the proper sorting and distribution of cellular lipids are essential for organelle biogenesis and viral infection.  相似文献   
4.

Background

Vestibular reflexes, evoked by human electrical (galvanic) vestibular stimulation (EVS), are utilized to assess vestibular function and investigate its pathways. Our study aimed to investigate the electrically-evoked vestibulo-ocular reflex (eVOR) output after bilateral and unilateral vestibular deafferentations to determine the characteristics for interpreting unilateral lesions such as vestibular schwannomas.

Methods

EVOR was recorded with dual-search coils as binocular three-dimensional eye movements evoked by bipolar 100 ms-step at EVS intensities of [0.9, 2.5, 5.0, 7.5, 10.0]mA and unipolar 100 ms-step at 5 mA EVS intensity. Five bilateral vestibular deafferented (BVD), 12 unilateral vestibular deafferented (UVD), four unilateral vestibular schwannoma (UVS) patients and 17 healthy subjects were tested with bipolar EVS, and five UVDs with unipolar EVS.

Results

After BVD, bipolar EVS elicited no eVOR. After UVD, bipolar EVS of one functioning ear elicited bidirectional, excitatory eVOR to cathodal EVS with 9 ms latency and inhibitory eVOR to anodal EVS, opposite in direction, at half the amplitude with 12 ms latency, exhibiting an excitatory-inhibitory asymmetry. The eVOR patterns from UVS were consistent with responses from UVD confirming the vestibular loss on the lesion side. Unexpectedly, unipolar EVS of the UVD ear, instead of absent response, evoked one-third the bipolar eVOR while unipolar EVS of the functioning ear evoked half the bipolar response.

Conclusions

The bidirectional eVOR evoked by bipolar EVS from UVD with an excitatory-inhibitory asymmetry and the 3 ms latency difference between normal and lesion side may be useful for detecting vestibular lesions such as UVS. We suggest that current spread could account for the small eVOR to 5 mA unipolar EVS of the UVD ear.  相似文献   
5.
Human umbilical vein endothelial cells (HUVECs) are an endothelial model of replicative senescence. Oxidative stress, possibly due to dysfunctional mitochondria, is believed to play a key role in replicative senescence and atherosclerosis, an age-related vascular disease. In this study, we determined the effect of cell division on genomic instability, mitochondrial function, and redox status in HUVECs that were able to replicate for approximately 60 cumulative population doublings (CPD). After 20 CPD, the nuclear genome deteriorated and the protein content of the cell population increased. This indicated an increase in cell size, which was accompanied by an increase in oxygen consumption, ATP production, and mitochondrial genome copy number and approximately 10% increase in mitochondrial mass. The antioxidant capacity increased, as seen by an increase in reduced glutathione, glutathione peroxidase, GSSG reductase, and glucose-6-phosphate dehydrogenase. However, by CPD 52, the latter two enzymes decreased, as well as the ratio of mitochondrial-to-nuclear genome copies, the mitochondrial mass, and the oxygen consumption per milligram of protein. Our results signify that HUVECs maintain a highly reducing (GSH) environment as they replicate despite genomic instability and loss of mitochondrial function.  相似文献   
6.
Dietary oxidants like lipid hydroperoxides (LOOH) can perturb cellular glutathione/glutathione disulphide (GSH/GSSG) status and disrupt mucosal turnover. This study examines the effect of LOOH on GSH/GSSG balance and phase transitions in the human colon cancer CaCo-2 cell. LOOH at 1 or 5 micro m were noncytotoxic, but disrupted cellular GSH/GSSG and stimulated proliferative activity at 6 h that paralleled increases in ornithine decarboxylase activity, thymidine incorporation, expression of cyclin D1/cyclin-dependent kinase 4, phosphorylation of retinoblastoma protein, and cell progression from G0/G1 to S. At 24 h, LOOH-induced sustained GSH/GSSG imbalance mediated growth arrest at G0/G1 that correlated with suppression of proliferative activity and enhanced oxidative DNA damage. LOOH-induced cell transitions were effectively blocked by N-acetylcysteine. Collectively, the study shows that subtoxic LOOH levels induce CaCo-2 GSH/GSSG imbalance that elicits time-dependent cell proliferation followed by growth arrest. These results provide insights into the mechanism of hydroperoxide-induced disruption of mucosal turnover with implications for understanding oxidant-mediated genesis of gut pathology.  相似文献   
7.
It has long been recognized that hydroperoxides are agents of cytotoxicity. However, in recent years, it is increasingly apparent that lipid hydroperoxide may play an important role in mediating cellular and molecular events in degenerative pathophysiological processes that lead to intestinal disorders, such as cancer. Yet, surprisingly, little is known of the intestinal disposition of peroxidized lipids and of the metabolic factors that determine mucosal peroxide elimination. The present paper summarizes the evidence for the pivotal role of reductant (GSH and NADPH) availability in intestinal peroxide detoxication. This information will provide important insights into the relationship between luminal lipid hydroperoxides and intestinal GSH redox homeostasis, and is pertinent to understanding how dietary oxidants like lipid peroxides, can impact intestinal integrity with implications for genesis of gut pathology.  相似文献   
8.
Our recent finding that insulin increased the expression of the glutamate-cysteine ligase catalytic subunit (GCLc) with coincident increases in GCL activity and cellular glutathione (GSH) in human brain microvascular endothelial cells (IHECs) suggests a role for insulin in vascular GSH maintenance. Here, using IHECs stably transfected with promoter-luciferase reporter vectors, we found that insulin increased GCLc promoter activity, which required a prerequisite increase or decrease in medium glucose. An intact antioxidant response element-4 was essential for promoter activation, which was attenuated by inhibitors of PI3-kinase/Akt/mTOR signaling. Interestingly, only under low-glucose conditions did promoter activation correlate with increased GCLc expression and GSH synthesis. Low tert-butylhydroperoxide (tBH) concentrations similarly mediated promoter activation, but the maximal activation dose was decreased 10-fold by insulin. Insulin-tBH coadministration abrogated the low or high glucose requirement for promoter activation, suggesting possible ROS involvement. ROS production was elevated at low glucose without or with insulin; however, GSH increases were not inhibited by tempol, suggesting that ROS did not achieve the threshold for driving GCLc promoter activation and de novo GSH synthesis. The minor effect of pyruvate also ruled out a major role for hypoglycemia (± insulin)-induced metabolic stress on GSH induction under these conditions.  相似文献   
9.
Fatty acid has been reported to be associated with cardiovascular diseases and cancer, but the possible mechanism remains unclear. Here, we reported a novel mechanism for the permissive role of fatty acid on iron intracellular translocation and subsequent oxidative injury. In vitro study from endothelial cells showed that iron alone had little effect, whereas in combination with PA (palmitic acid), iron-mediated toxicity was markedly potentiated, as reflected in mitochondrial dysfunction, cell death, apoptosis, and DNA mutation. We also showed that PA not only facilitated iron translocation into cells through a transferrin-receptor (TfR)-independent mechanism, but also translocated iron into mitochondria; the subsequent intracellular iron overload resulted in reactive oxygen species (ROS) overgeneration and lipid oxidation. Further investigation revealed that PA-facilitated iron translocation is due to Fe/PA-mediated extracellular oxidative stress and the subsequent membrane damage with increased membrane permeability. Fe/PA-mediated toxic effects were reduced in rho0 cells lacking mitochondrial DNA or by antioxidant enzyme SOD, especially mitochondrially localized MnSOD, suggesting a permissive role of PA for iron deposition on the vascular wall and its subsequent toxicity via mitochondrial oxidative stress. This observation was confirmed in vivo in mice, wherein higher vascular iron deposition and accompanying superoxide release were observed in the presence of a high-fat diet with iron administration.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号