首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  2013年   2篇
  2012年   4篇
  2008年   1篇
  2002年   2篇
  1999年   2篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有17条查询结果,搜索用时 447 毫秒
1.
1. Various hybridization approaches were employed to investigate structural and chromosomal interrelationships between the human cholinesterase genes CHE and ACHE encoding the polymorphic, closely related, and coordinately regulated enzymes having butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) activities. 2. Homologous cosmid recombination with a 190-base pair 5' fragment from BuChEcDNA resulted in the isolation of four overlapping cosmid clones, apparently derived from a single gene with several introns. The Cosmid CHEDNA included a 700-base pair fragment known to be expressed at the 3' end of BuChEcDNA from nervous system tumors and which has been mapped by in situ hybridization to the unique 3q26-ter position. In contrast, cosmid CHEDNA did not hybridize with full-length AChEcDNA, proving that the complete CHE gene does not include AChE-encoding sequences either in exons or in its introns. 3. The chromosomal origin of BuChE-encoding sequences was further examined by two unrelated gene mapping approaches. Filter hybridization with DNA from human/hamster hybrid cell lines revealed BuChEcDNA-hybridizing sequences only in cell lines including human chromosome 3. However, three BuChEcDNA-homologous sequences were observed at chromosomal positions 3q21, 3q26-ter, and 16q21 by a highly stringent in situ hybridization protocol, including washes at high temperature and low salt. 4. These findings stress the selectivity of cosmid recombination and chromosome blots, raise the possibility of individual differences in BuChEcDNA-hybridizing sequences, and present an example for a family highly similar proteins encoded by distinct, nonhomologous genes.  相似文献   
2.
3.
4.
5.
Structure-function relationships of cholinesterases (CHEs) were studied by expressing site-directed and naturally occurring mutants of human butyrylcholinesterase (BCHE) in microinjected Xenopus oocytes. Site-directed mutagenesis of the conserved electronegative Glu441,Ile442,Glu443 domain to Gly441,Ile442,Gln443 drastically reduced the rate of butyrylthiocholine (BTCh) hydrolysis and caused pronounced resistance to dibucaine binding. These findings implicate the charged Glu441,Ile442,Glu443 domain as necessary for a functional CHE catalytic triad as well as for binding quinoline derivatives. Asp70 to Gly substitution characteristic of 'atypical' BCHE, failed to alter its Km towards BTCh or dibucaine binding but reduced hydrolytic activity to 25% of control. Normal hydrolytic activity was restored to Gly70 BCHE by additional His114 or Tyr561 mutations, both of which co-appear with Gly70 in natural BCHE variants, which implies a likely selection advantage for these double BCHE mutants over the single Gly70 BCHE variant. Gly70 BCHE variants also displayed lower binding as compared with Asp70 BCHE to cholinergic drugs, certain choline esters and solanidine. These effects were ameliorated in part by additional mutations or in binding solanidine complexed with sugar residues. These observations indicate that structural interactions exist between N' and C' terminal domains in CHEs which contribute to substrate and inhibitor binding and suggest a crucial involvement of both electrostatic and hydrophobic domains in the build-up of the CHE active center.  相似文献   
6.
Molecular biological search for human genes encoding cholinesterases   总被引:5,自引:0,他引:5  
Cholinesterases (ChEs) are highly polymorphic proteins, capable of rapidly hydrolyzing the neurotransmitter acetylcholine and involved in terminating neurotransmission in neuromuscular junctions and cholinergic synapses. In an attempt to delineate the structure and detailed properties of the human protein(s) and the gene(s) coding for the acetylcholine hydrolyzing enzymes, a human cDNA coding for ChE was isolated by use of oligodeoxynucleotide screening of cDNA libraries. For this purpose, a method for increasing the effectiveness of oligonucleotide screening by introducing deoxyinosine in sites of codon ambiguity and using tetramethyl-ammonium salt washes to remove false-positive hybrids was employed. The resulting isolated 2.4-kilobase (kb) cholinesterase cDNA sequences encode for the entire mature secretory protein, preceded by an N-terminal signal peptide. The human ChE primary sequence shows almost no homology to other serine hydrolases, with the exception of a hexapeptide at the active site. In contrast, it displays extensive homology with acetylcholinesterase form Torpedo californica and Drosophila melanogaster as well as with bovine thyroglobulin. These extensive homologies probably suggest the need of the entire coding sequence for the physiological function(s) fulfilled by the enzyme and further suggest a common, unique, ancestral gene for these cDNAs. In turn, the cDNA was used as a probe to isolate genomic DNA sequences for the 5'-region of the human ChE gene. The genomic DNA fragment encoding part of the 5'-region of ChEcDNA was detected by DNA blot hybridization, enriched 70-fold by gel electrophoresis and electroelution, cloned in lambda phage and isolated. Sequencing of the cloned DNA revealed that it did indeed include part of the 5'-region of ChEcDNA, starting at an adjacent 5'-position to the nucleotides coding for the initiator methionine, and ending with an EcoRI restriction site inherent to the ChEcDNA sequence. The isolated fragment of the human cholinesterase gene is currently employed to complete the structural characterization of this and related genes.  相似文献   
7.
8.
9.
Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号