首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   4篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   5篇
  2007年   10篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
排序方式: 共有63条查询结果,搜索用时 265 毫秒
1.
A plethora of magnetic nanoparticles has been developed and investigated under different alternating magnetic fields (AMF) for the hyperthermic treatment of malignant tissues. Yet, clinical applications of magnetic hyperthermia are sporadic, mostly due to the low energy conversion efficiency of the metallic nanoparticles and the high tissue concentrations required. Here, we study the hyperthermic performance of commercially available formulations of superparamagnetic iron oxide nanoparticles (SPIOs), with core diameter of 5, 7 and 14 nm, in terms of absolute temperature increase ΔT and specific absorption rate (SAR). These nanoparticles are operated under a broad range of AMF conditions, with frequency f varying between 0.2 and 30 MHz; field strength H ranging from 4 to 10 kA m−1; and concentration cMNP varying from 0.02 to 3.5 mg ml−1. At high frequency field (∼30 MHz), non specific heating dominates and ΔT correlates with the electrical conductivity of the medium. At low frequency field (<1 MHz), non specific heating is negligible and the relaxation of the SPIO within the AMF is the sole energy source. We show that the ΔT of the medium grows linearly with cMNP, whereas the SARMNP of the magnetic nanoparticles is independent of cMNP and varies linearly with f and H2. Using a computational model for heat transport in a biological tissue, the minimum requirements for local hyperthermia (Ttissue >42°C) and thermal ablation (Ttissue >50°C) are derived in terms of cMNP, operating AMF conditions and blood perfusion. The resulting maps can be used to rationally design hyperthermic treatments and identifying the proper route of administration – systemic versus intratumor injection – depending on the magnetic and biodistribution properties of the nanoparticles.  相似文献   
2.
Cytochrome c oxidase (CytcO) is a redox-driven, membrane-bound proton pump. One of the proton transfer pathways of the enzyme, the D pathway, used for the transfer of both substrate and pumped protons, accommodates a network of hydrogen-bonded water molecules that span the distance between an aspartate (Asp(132)), near the protein surface, and glutamate Glu(286), which is an internal proton donor to the catalytic site. To investigate how changes in the environment around Glu(286) affect the mechanism of proton transfer through the pathway, we introduced a non-hydrogen-bonding (Ala) or an acidic residue (Asp) at position Ser(197) (S197A or S197D), located approximately 7 A from Glu(286). Although Ser(197) is hydrogen-bonded to a water molecule that is part of the D pathway "proton wire," replacement of the Ser by an Ala did not affect the proton transfer rate. In contrast, the S197D mutant CytcO displayed a turnover activity of approximately 35% of that of the wild-type CytcO, and the O(2) reduction reaction was not linked to proton pumping. Instead, a fraction of the substrate protons was taken from the positive ("incorrect") side of the membrane. Furthermore, the pH dependence of the proton transfer rate was altered in the mutant CytcO. The results indicate that there is plasticity in the water coordination of the proton pathway, but alteration of the electrostatic potential within the pathway results in uncoupling of the proton translocation machinery.  相似文献   
3.
The pioneering research work published by Hjertén et al. [J. Chromatogr. 473 (1989) 273] in 1989 dealing with development and application of the continuous bed (monolithic) technique as an attractive alternative for the classical packed columns in chromatography, stimulated further investigations in this direction. The research data published since that time on the development and application of the continuous beds formed using hydrophobic interaction-based phase separation mechanism are reviewed. Some innovative species of the beds, such as polyrotaxane beds or nonparticulate restricted-access materials for direct analysis of the biological fluids in the capillary format are also discussed. Characteristic features and practical details of the continuous bed technique are revealed. Due to many advantages, the continuous bed technique became a competitor with the traditional packings in capillary or chip-based microanalysis. The importance of the continuous bed morphology on the chromatographic characteristics is shown. The applicability of modern microscopic analysis to evaluate the morphology of the continuous beds is demonstrated.  相似文献   
4.
Electron- and proton-transfer reactions in bacterial nitric oxide reductase (NOR) have been investigated by optical spectroscopy and electrometry. In liposomes, NOR does not show any generation of an electric potential during steady-state turnover. This electroneutrality implies that protons are taken up from the same side of the membrane as electrons during catalysis. Intramolecular electron redistribution after photolysis of the partially reduced CO-bound enzyme shows that the electron transfer in NOR has the same pathway as in the heme-copper oxidases. The electron is transferred from the acceptor site, heme c, via a low-spin heme b to the binuclear active site (heme b3/FeB). The electron-transfer rate between hemes c and b is (3 +/- 2) x 10(4) s(-1). The rate of electron transfer between hemes b and b3 is too fast to be resolved (>10(6) s(-1)). Only electron transfer between heme c and heme b is coupled to the generation of an electric potential. This implies that the topology of redox centers in NOR is comparable to that in the heme-copper cytochrome oxidases. The optical and electrometric measurements allow identification of the intermediate states formed during turnover of the fully reduced enzyme, as well as the associated proton and electron movement linked to the NO reduction. The first phase (k = 5 x 10(5) s(-1)) is electrically silent, and characterized by the disappearance of absorbance at 433 nm and the appearance of a broad peak at 410 nm. We assign this phase to the formation of a ferrous NO adduct of heme b3. NO binding is followed by a charge separation phase (k = 2.2 x 10(5) s(-1)). We suggest that the formation of this intermediate that is not linked to significant optical changes involves movement of charged side chains near the active site. The next step creates a negative potential with a rate constant of approximately 3 x 10(4) s(-1) and a weak optical signature. This is followed by an electrically silent phase with a rate constant of 5 x 10(3) s(-1) leading to the last intermediate of the first turnover (a rate constant of approximately 10(3) s(-1)). The fully reduced enzyme has four electrons, enough for two complete catalytic cycles. However, the protons for the second turnover must be taken from the bulk, resulting in the generation of a positive potential in two steps. The optical measurements also verify two phases in the oxidation of low-spin hemes. Based on these results, we present mechanistic models of NO reduction by NOR. The results can be explained with a trans mechanism rather than a cis model involving FeB. Additionally, the data open up the possibility that NOR employs a P450-type mechanism in which only heme b3 functions as the NO binding site during turnover.  相似文献   
5.
We report the effects of pine and oak litter on species composition and diversity of mycorrhizal fungi colonizing 2-year-old Pinus sylvestris L. seedlings grown in a bare-root nursery in Lithuania. A layer of pine or oak litter was placed on the surface of the nursery bed soil to mimic natural litter cover. Oak litter amendment appeared to be most favorable for seedling survival, with a 73% survival rate, in contrast to the untreated mineral bed soil (44%). The concentrations of total N, P, K, Ca, and Mg were higher in oak growth medium than in pine growth medium. Relative to the control (pH 6.1), the pH was lower in pine growth medium (5.8) and higher in oak growth medium (6.3). There were also twofold and threefold increases in the C content of growth medium with the addition of pine and oak litter, respectively. Among seven mycorrhizal morphotypes, eight different mycorrhizal taxa were identified: Suillus luteus, Suillus variegatus, Wilcoxina mikolae, a Tuber sp., a Tomentella sp., Cenococcum geophilum, Amphinema byssoides, and one unidentified ectomycorrhizal symbiont. Forest litter addition affected the relative abundance of mycorrhizal symbionts more than their overall representation. This was more pronounced for pine litter than for oak litter, with 40% and 25% increases in the abundance of suilloid mycorrhizae, respectively. Our findings provide preliminary evidence that changes in the supply of organic matter through litter manipulation may have far-reaching effects on the chemistry of soil, thus influencing the growth and survival of Scots pine seedlings and their mycorrhizal communities.  相似文献   
6.
A simple method for the preparation of an affinity monolithic (also called continuous bed) capillary column for alpha-mannose-specific lectins is described. 2-Hydroxyethyl methacrylate in combination with (+)-N,N -diallyltartardiamide (DATD) and piperazine diacrylamide (PDA, 1,4-bisacryloyl-piperazine) as crosslinkers, were used as monomers for the monolith. After oxidation of DATD with periodate, alpha-mannose with spacer was bound to the aldehyde groups of the polymeric skeleton via reductive amination to form an affinity column for the separation, enrichment or binding studies of mannose-specific lectins. The permeability of the column was excellent. The porosity of the monolith was investigated by scanning electron microscope (SEM) and inverse size exclusion chromatography (ISEC). The affinity of the monolith was evaluated by frontal analysis (FA) and fluorescence microscopy (FM) using fluorescently labeled concanavalin (Con A). Frontal affinity chromatography showed a specific interaction of two different lectins with the alpha-mannose-modified monolith. According to FM the affinity sites were evenly distributed over the monolithic bed.  相似文献   
7.
We report the effects of pine and oak litter on species composition and diversity of mycorrhizal fungi colonizing 2-year-old Pinus sylvestris L. seedlings grown in a bare-root nursery in Lithuania. A layer of pine or oak litter was placed on the surface of the nursery bed soil to mimic natural litter cover. Oak litter amendment appeared to be most favorable for seedling survival, with a 73% survival rate, in contrast to the untreated mineral bed soil (44%). The concentrations of total N, P, K, Ca, and Mg were higher in oak growth medium than in pine growth medium. Relative to the control (pH 6.1), the pH was lower in pine growth medium (5.8) and higher in oak growth medium (6.3). There were also twofold and threefold increases in the C content of growth medium with the addition of pine and oak litter, respectively. Among seven mycorrhizal morphotypes, eight different mycorrhizal taxa were identified: Suillus luteus, Suillus variegatus, Wilcoxina mikolae, a Tuber sp., a Tomentella sp., Cenococcum geophilum, Amphinema byssoides, and one unidentified ectomycorrhizal symbiont. Forest litter addition affected the relative abundance of mycorrhizal symbionts more than their overall representation. This was more pronounced for pine litter than for oak litter, with 40% and 25% increases in the abundance of suilloid mycorrhizae, respectively. Our findings provide preliminary evidence that changes in the supply of organic matter through litter manipulation may have far-reaching effects on the chemistry of soil, thus influencing the growth and survival of Scots pine seedlings and their mycorrhizal communities.  相似文献   
8.
The genes encoding restriction-modification system of unknown specificity Hin4II from Haemophilus influenzae RFL4 were cloned in Escherichia coli and sequenced. The Hin4II system comprises three tandemly arranged genes coding for m6A DNA methyltransferase, m5C DNA methyltransferase and restriction endonuclease, respectively. Restriction endonuclease was expressed in E. coli and purified to apparent homogeneity. The DNA recognition sequence and cleavage positions were determined. R.Hin4II recognizes the novel non-palindromic sequence 5'-CCTTC-3' and cleaves the DNA 6 and 5 nt downstream in the top and bottom strand, respectively. The new prototype restriction endonuclease Hin4II was classified as a potential candidate of HNH nuclease family after comparison against SMART database. An amino acid sequence motif 297H-X14-N-X8-H of Hin4II was proposed as forming a putative catalytic center.  相似文献   
9.
Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.  相似文献   
10.
The influence of Thermomyces lanuginosus lipase (TLL) on the phase behaviour of liquid-crystalline phases of aqueous phytantriol as well as conformational changes of TLL entrapped in the cubic Q230 phase have been studied by small angle X-ray diffraction (SAXD), FT-Raman, and FT-IR techniques. It was found that the lipidic Q230 phase is able to accommodate up to 10 wt.% of TLL, and the temperature of phase transition to the inverted hexagonal phase H(II) increases indicating stabilizing effect of the protein. FT-Raman analysis of Trp amino acid marker band W3 revealed that the average rotation angle around the C3-Cbeta bond of four Trp residues of TLL in the Q230 phase increases. Reasoning from available TLL crystallographic data, this result is explained by structural transition of entrapped protein to so-called "open" and more related to the enzymatically-active conformation. TLL secondary structure analysis by amide I and amide III vibrational bands showed that content of alpha-helixes does not change, while a part of beta-sheet structures transforms to less ordered elements upon incorporation of protein into the Q230 phase of aqueous phytantriol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号