首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2442篇
  免费   243篇
  国内免费   1篇
  2023年   13篇
  2022年   19篇
  2021年   59篇
  2020年   25篇
  2019年   40篇
  2018年   53篇
  2017年   43篇
  2016年   68篇
  2015年   115篇
  2014年   141篇
  2013年   166篇
  2012年   205篇
  2011年   178篇
  2010年   122篇
  2009年   111篇
  2008年   133篇
  2007年   115篇
  2006年   116篇
  2005年   106篇
  2004年   81篇
  2003年   88篇
  2002年   63篇
  2001年   21篇
  2000年   24篇
  1999年   33篇
  1998年   18篇
  1997年   15篇
  1996年   17篇
  1995年   16篇
  1994年   17篇
  1993年   12篇
  1992年   30篇
  1991年   27篇
  1990年   21篇
  1989年   26篇
  1988年   12篇
  1987年   13篇
  1986年   14篇
  1985年   19篇
  1984年   17篇
  1982年   13篇
  1981年   22篇
  1980年   21篇
  1979年   13篇
  1978年   15篇
  1977年   15篇
  1973年   15篇
  1972年   12篇
  1971年   15篇
  1969年   18篇
排序方式: 共有2686条查询结果,搜索用时 15 毫秒
1.
Glutamate is the main excitatory amino acid, but its presence in the extracellular milieu has deleterious consequences. It may induce excitotoxicity and also compete with cystine for the use of the cystine–glutamate exchanger, blocking glutathione neosynthesis and inducing an oxidative stress-induced cell death. Both mechanisms are critical in the brain where up to 20% of total body oxygen consumption occurs. In normal conditions, the astrocytes ensure that extracellular concentration of glutamate is kept in the micromolar range, thanks to their coexpression of high-affinity glutamate transporters (EAATs) and glutamine synthetase (GS). Their protective function is nevertheless sensitive to situations such as oxidative stress or inflammatory processes. On the other hand, macrophages and microglia do not express EAATs and GS in physiological conditions and are the principal effector cells of brain inflammation. Since the late 1990s, a number of studies have now shown that both microglia and macrophages display inducible EAAT and GS expression, but the precise significance of this still remains poorly understood. Brain macrophages and microglia are sister cells but yet display differences. Both are highly sensitive to their microenvironment and can perform a variety of functions that may oppose each other. However, in the very particular environment of the healthy brain, they are maintained in a repressed state. The aim of this review is to present the current state of knowledge on brain macrophages and microglial cells activation, in order to help clarify their role in the regulation of glutamate under pathological conditions as well as its outcome.  相似文献   
2.
3.
4.
5.
The development of Penicillium roqueforti on buckwheat seeds proceeds roughly into four steps, involving a lag phase and three growth phases. First, it appears as a spore germination and external colonization of the grains by the mycelium. Then, mainly external sporulation and internal colonization of the seeds occur and finally internal sporulation takes place. The Stoichiometry of the growth and the sporulation is established. Kinetic experiments performed in a fixed bed reactor show that the growth of the microorganism (biomass production) may be estimated by the protein content of the medium. This growth occurs with a very low mu(max) value close to 0.030 h(-1). The chitin content of the medium is an indicator of the sporulation, just as the metabolic liquor (mainly water) produced during the course of a cultivation. The values of the observed respiratory quotient are close to those predicted by stoichiometry.  相似文献   
6.
In cells stably transfected and overexpressing the mouse mdr1 gene, multidrug resistance is associated with an increased ATP-dependent drug efflux. Analysis of the predicted amino acid sequence of the MDR1 protein revealed the presence of two putative nucleotide-binding sites (NBS). To assess the functional importance of these NBS in the overall drug resistance phenotype conferred by mdr1, we introduced amino acid substitutions in the core consensus sequence for nucleotide binding, GXGKST. Mutants bearing the sequence GXAKST or GXGRST at either of the two NBS of mdr1 and a double mutant harboring the sequence GXGRST at both NBS were generated. The integrity of the two NBS was essential for the biological activity of mdr1, since all five mutants were unable to confer drug resistance to hamster drug-sensitive cells in transfection experiments. Conversely, a lysine-to-arginine substitution outside the core consensus sequence had no effect on the activity of mdr1. Failure to reduce intracellular accumulation of [3H]vinblastine paralleled the loss of activity in cell clones expressing mutant MDR1 proteins. However, the ability to bind the photoactivatable ATP analog 8-azido ATP was retained in the five inactive MDR1 mutants. This result implies that an essential step subsequent to ATP binding is impaired in these mutants, possibly ATP hydrolysis or secondary conformational changes induced by ATP-binding or hydrolysis. Our results suggest that the two NBS function in a cooperative fashion, since mutations in a single NBS completely abrogated the biological activity of mdr1.  相似文献   
7.
Three cDNA clones of 1.6 (3u), 1.2 (5g) and 0.6 (5b) kbp, specific for peripherin, a neuronal intermediate filament protein (IFP), have been isolated from a murine neuroblastoma cell lambda gt11 library by immunoscreening using peripherin antiserum. Antibodies eluted from the fusion proteins produced by clones 3u and 5g recognize the peripherin spots on immunoblots. Where they overlap the three cDNAs have identical sequences. cDNA 5g exhibits the closest homology to type III IFP cDNAs. cDNA 3u is identical to the corresponding region of cDNA 5g, except for the insertion of a 96 bp fragment at a position corresponding to the junction of exons 4 and 5 in type III IFP cDNAs. cDNA 5b is also identical to the corresponding region of cDNA 5g, except for the deletion of a 62 bp fragment at the junction of exons 8 and 9 in type III IFP cDNAs. S1 mapping experiments performed with probes covering the 3' end of the two unexpected regions show that three distinct mRNAs correspond to the three cDNAs. Moreover, three peripherin products, two minor 61 and 56 kd products in addition to the major 58 kd peripherin, are observed when poly(A)+ RNA is in vitro translated, the 61 kd peripherin being translated from the 3u-selected RNA. The three RNAs originate from alternative splicing of a unique peripherin gene, thus generating polymorphism of peripherin.  相似文献   
8.
Peripherin, an intermediate filament protein, described recently, is expressed in well defined neuronal populations. We studied the phosphorylation, in vivo, of this protein in mouse neuroblastoma NIE 115 cell line and in sympathetic neurons labelled with [32P]-orthophosphate. The autoradiograms of proteins separated on two-dimensional polyacrylamide gels were compared with the Coomassie-blue stainings. The results show that peripherin occurs as a mixture of phosphorylated and non-phosphorylated isoforms, and that these forms coexist in both differentiated and non-differentiated cells. We demonstrate by cleavage at the unique tryptophan residue, a characteristic shared by most other intermediate filament proteins (IFP), that the phosphorylation sites are located on the amino-terminal half of peripherin as it is for vimentin and desmin. These results are discussed in relation to the organization of the filamentous network constituted by peripherin.  相似文献   
9.
We have investigated the level of expression of the atrial natriuretic factor (ANF) gene in the human heart during ontogenic development by determining the concentrations of ANF messenger ribonucleic acid (ANF mRNA), of immunoreactive ANF (IR ANF) and of receptor reactive ANF (RR ANF), in myocardial samples of the various heart chambers. We found the level was high and almost identical in the left and right ventricles in utero. It gradually decreased during ontogenic development to reach the low adult levels, with a more rapid decrease in the right than in the left ventricle after birth. In the atria, ANF gene expression was high as early as the 13th week of gestation, was higher in the right than in the left atrium, and appeared little affected by ontogenic development.  相似文献   
10.
E Schurr  E Skamene  K Morgan  M L Chu  P Gros 《Genomics》1990,8(3):477-486
We have investigated the degree of synteny between the long arm (q) of human chromosome 2 and the proximal portion of mouse chromosome 1. To define the limits of synteny, we have determined whether mouse homologs of seven human genes mapping to chromosome 2q cosegregated with anchor loci on mouse chromosome 1. The loci investigated were NEB/Neb, ELN/Eln, COL3A1/Col3a1, CRYG/Len-2, FN1/Fn-1, VIL/Vil, and COL6A3/Col6a3. Ren-1,2 and Acrg were included as two proximal mouse chromosome 1 anchor loci. The segregation of restriction fragment length polymorphisms at these loci was analyzed in the progeny of Mus spretus x C57BL/6J hybrids backcrossed to the C57BL/6J inbred strain. We found that five of the structural protein loci and the two anchor loci form a linkage group on proximal murine chromosome 1. The proposed gene order of this group of linked markers is centromere - Col3a1 - Len-2-Fn-1-Vil-Acrg-Col6a3-Ren1,2. Neb and Eln are linked neither to each other nor to any other marker on proximal mouse chromosome 1. Therefore, the mouse loci Col3a1 and Col6a3 are identified as flanking markers of the linkage group of structural protein loci. The estimated genetic map distances are Col3a1-13.3 cM-Len-2-3.4 cM-Fn-1-3.8 cM-Vil-9.6 cM-Acrg-2.1 cM-Col6a3-18.3 cM-Ren1,2. The available map information for human chromosome 2q markers and mouse chromosome 1 markers presented here tentatively identifies Col3a1 and Col6a3 as the border markers that define the limits of the syntenic chromosome segment. The order of mouse genes on chromosome 1 and their human homologs on chromosome 2q also appears to be conserved, suggesting that mapping of murine genes on the conserved segment may be useful to predict gene order in man.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号