首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   11篇
  2023年   1篇
  2021年   5篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   8篇
  2014年   4篇
  2013年   10篇
  2012年   14篇
  2011年   5篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有102条查询结果,搜索用时 54 毫秒
1.
2.
New viral strains can be evolved to recognize different host glycans through mutagenesis and experimental adaptation. However, such mutants generally harbor amino acid changes that affect viral binding to a single class of carbohydrate receptors. We describe the rational design and synthesis of novel, chimeric adeno-associated virus (AAV) strains that exploit an orthogonal glycan receptor for transduction. A dual glycan-binding AAV strain was first engineered as proof of concept by grafting a galactose (Gal)-binding footprint from AAV serotype 9 onto the heparan sulfate-binding AAV serotype 2. The resulting chimera, AAV2G9, continues to bind heparin affinity columns but interchangeably exploits Gal and heparan sulfate receptors for infection, as evidenced by competitive inhibition assays with lectins, glycans, and parental AAV strains. Although remaining hepatotropic like AAV2, the AAV2G9 chimera mediates rapid onset and higher transgene expression in mice. Similarly, engraftment of the Gal footprint onto the laboratory-derived strain AAV2i8 yielded an enhanced AAV2i8G9 chimera. This new strain remains liver-detargeted like AAV2i8 while selectively transducing muscle tissues at high efficiency, comparable with AAV9. The AAV2i8G9 chimera is a promising vector candidate for targeted gene therapy of cardiac and musculoskeletal diseases. In addition to demonstrating the modularity of glycan receptor footprints on viral capsids, our approach provides design strategies to expand the AAV vector toolkit.  相似文献   
3.
4.
Norovirus protease is an essential enzyme for proteolytic maturation of norovirus nonstructural proteins and has been implicated as a potential target for antiviral drug development. Although X‐ray structural studies of the protease give us wealth of structural information including interactions of the protease with its substrate and dimeric overall structure, the role of protein dynamics in the substrate recognition and the biological relevance of the protease dimer remain unclear. Here we determined the solution NMR structure of the 3C‐like protease from Norwalk virus (NV 3CLpro), a prototype strain of norovirus, and analyzed its backbone dynamics and hydrodynamic behavior in solution. 15N spin relaxation and analytical ultracentrifugation analyses demonstrate that NV 3CLpro is predominantly a monomer in solution. Solution structure of NV 3CLpro shows significant structural variation in C‐terminal domain compared with crystal structures and among lower energy structure ensembles. Also, 15N spin relaxation and Carr–Purcell–Meiboom–Gill (CPMG)‐based relaxation dispersion analyses reveal the dynamic properties of residues in the C‐terminal domain over a wide range of timescales. In particular, the long loop spanning residues T123–G133 show fast motion (ps‐ns), and the residues in the bII–cII region forming the large hydrophobic pocket (S2 site) undergo conformational exchanges on slower timescales (μs–ms), suggesting their important role in substrate recognition.  相似文献   
5.
6.
The role of prophenoloxidase (proPO) system in recognition and phagocytosis of yeast cells by hemocytes was examined in vitro using whole plasma and proPO system isolated from the plasma of the marine mussel, Perna viridis. The proPO was isolated from the plasma by ammonium sulphate precipitation and gel filtration. The final proPO preparation was homogeneous in native PAGE, and could be activated by trypsin, α-chymotrypsin and pronase-E. Laminarin (a polymer of β-1, 3-glucan) and lipopolysaccharides (LPS) from diverse bacterial species effectively activated the isolated proPO, demonstrating the ability of this proenzyme to interact directly with microbial surface components. The susceptibility of proPO activation to inhibition by serine protease inhibitors such as soybean trypsin inhibitor (STI) or p-nitrophenyl-p′-guanidinobenzoate (p-NPGB), indicates that the isolated fraction may contain an integral serine protease domain in an inactive state. The presence of laminarin- or LPS-activated whole plasma of P. viridis facilitated adherence of yeast cells to hemocyte surface as well as eventually stimulated phagocytic uptake of the target cells by hemocytes, and no such hemocytic response was recorded with STI controls. This and other results strongly suggest that the intermediary factors generated during activation of plasma proPO system by non-self molecules play a key role in recognition and opsono-phagocytosis by hemocytes. However, the proPO system isolated from P. viridis plasma, after activation with microbial surface components, failed to show an opsonic effect.  相似文献   
7.
Primary open angle glaucoma (POAG) belonging to a group of optic neuropathies, result from interaction between genetic and environmental factors. Study of associations with quantitative traits (QTs) is one of the successful strategies to understand the complex genetics of POAG. The current study attempts to explore the association of variations near/in genes like ATOH7, SIX1/SIX6 complex, CDKN2B, CARD10, and CDC7 with POAG and its QTs including vertical cup to disc ratio (VCDR), central corneal thickness (CCT), intra ocular pressure (IOP), and axial length (AL). Case-control study design was carried out in a sample size of 97 POAG cases and 371 controls from South India. Model-based (additive, recessive, dominant) association of the genotypes and their interaction was carried out between cases and controls using chi-square, linear and logistic regression methods. Nominal significance (P<0.05) was observed for QTs like i) VCDR with SNPs rs1900004 (ATOH7); rs1192415 (CDC7); rs10483727 (SIX1/SIX6), rs9607469 (CARD10); ii) CCT with rs1192415; iii) IOP with rs1900004 and iv) AL with rs1900004 and rs1063192 (CDKN2B). We were able to replicate previously known interactions between ATOH7-SIX6 and SIX6-CDKN2B along with few novel interactions between ATOH7CDC7 and SIX6 with genes including CARD10 and CDC7. In summary, our results suggest that a probable interaction among the candidate genes for QTs, play a major role in determining the individual’s susceptibility to POAG.  相似文献   
8.
The bacterial CRISPR endoribonuclease Csy4 has recently been described as a potential RNA processing tool. Csy4 recognizes substrate RNA through a specific 28-nt hairpin sequence and cleaves at the 3′ end of the stem. To further explore applicability in mammalian cells, we introduced this hairpin at various locations in mRNAs derived from reporter transgenes and systematically evaluated the effects of Csy4-mediated processing on transgene expression. Placing the hairpin in the 5′ UTR or immediately after the start codon resulted in efficient degradation of target mRNA by Csy4 and knockdown of transgene expression by 20- to 40-fold. When the hairpin was incorporated in the 3′ UTR prior to the poly(A) signal, the mRNA was cleaved, but only a modest decrease in transgene expression (∼2.5-fold) was observed. In the absence of a poly(A) tail, Csy4 rescued the target mRNA substrate from degradation, resulting in protein expression, which suggests that the cleaved mRNA was successfully translated. In contrast, neither catalytically inactive (H29A) nor binding-deficient (R115A/R119A) Csy4 mutants were able to exert any of the effects described above. Generation of a similar 3′ end by RNase P-mediated cleavage was unable to rescue transgene expression independent of Csy4. These results support the idea that the selective generation of the Csy4/hairpin complex resulting from cleavage of target mRNA might serve as a functional poly(A)/poly(A) binding protein (PABP) surrogate, stabilizing the mRNA and supporting translation. Although the exact mechanism(s) remain to be determined, our studies expand the potential utility of CRISPR nucleases as tools for controlling mRNA stability and translation.  相似文献   
9.
Epstein-Barr virus (EBV) infection of B cells is associated with lymphoma and other human cancers. EBV infection is initiated by the binding of the viral envelope glycoprotein (gp350) to the cell surface receptor CR2. We determined the X-ray structure of the highly glycosylated gp350 and defined the CR2 binding site on gp350. Polyglycans shield all but one surface of the gp350 polypeptide, and we demonstrate that this glycan-free surface is the receptor-binding site. Deglycosylated gp350 bound CR2 similarly to the glycosylated form, suggesting that glycosylation is not important for receptor binding. Structure-guided mutagenesis of the glycan-free surface disrupted receptor binding as well as binding by a gp350 monoclonal antibody, a known inhibitor of virus-receptor interactions. These results provide structural information for developing drugs and vaccines to prevent infection by EBV and related viruses.  相似文献   
10.
Human complement receptor type 2 (CR2/CD21) is a B lymphocyte membrane glycoprotein that plays a central role in the immune responses to foreign Ags as well as the development of autoimmunity to nuclear Ags in systemic lupus erythematosus. In addition to these three well-characterized ligands, C3d/iC3b, EBV-gp350, and CD23, a previous study has identified CR2 as a potential receptor for IFN-alpha. IFN-alpha, a multifunctional cytokine important in the innate immune system, has recently been proposed to play a major pathogenic role in the development of systemic lupus erythematosus in humans and mice. In this study, we have shown using surface plasmon resonance and ELISA approaches that CR2 will bind IFN-alpha in the same affinity range as the other three well-characterized ligands studied in parallel. In addition, we show that IFN-alpha interacts with short consensus repeat domains 1 and 2 in a region that serves as the ligand binding site for C3d/iC3b, EBV-gp350, and CD23. Finally, we show that treatment of purified human peripheral blood B cells with the inhibitory anti-CR2 mAb 171 diminishes the induction of IFN-alpha-responsive genes. Thus, IFN-alpha represents a fourth class of extracellular ligands for CR2 and interacts with the same domain as the other three ligands. Defining the role of CR2 as compared with the well-characterized type 1 IFN-alpha receptor 1 and 2 in mediating innate immune and autoimmune roles of this cytokine should provide additional insights into the biologic roles of this interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号