首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   20篇
  国内免费   1篇
  2023年   7篇
  2022年   9篇
  2021年   21篇
  2020年   9篇
  2019年   16篇
  2018年   20篇
  2017年   13篇
  2016年   20篇
  2015年   28篇
  2014年   25篇
  2013年   39篇
  2012年   36篇
  2011年   30篇
  2010年   41篇
  2009年   27篇
  2008年   34篇
  2007年   29篇
  2006年   23篇
  2005年   11篇
  2004年   12篇
  2003年   9篇
  2002年   9篇
  1998年   1篇
  1994年   1篇
  1985年   1篇
  1981年   1篇
  1974年   1篇
排序方式: 共有473条查询结果,搜索用时 15 毫秒
1.
2.
Protease inhibitor preparations (PIP) with antitryptic and antichymotryptic activities, isolated from field bean legume as well as doxorubicin and cyclophosphamide could effectively suppress the growth of Yoshida sarcoma ascites tumor cells transplanted in adult rats and prevent their death. As against this, methotrexate and heat-inactivated PIP were ineffective in such rats at varied doses of treatment tried. The percent survival of animals appeared to be related to the purity, treatment mode and the dose of PIP used. Zymographic analysis of the trypsin activated sarcoma cell homagenate revealed the presence of six protease bands in the molecular weight range of 51kD to 206kD. Prolonged interactions of such zymograms with protease inhibitors such as 20mM EDTA or 5mM diisopropyl fluorophosphate (DIFP) or 400 · μg/ml of PIP in reaction buffer indicated that these are not metalloproteases but serine proteases whose activities are inhibited by PIP and DIFP. Since proteases are involved in cell growth regulation and cell transformation, we hypothesize a positive relationship between the field bean protease inhibitor;s blocking action on tumor cell proteases and its tumor suppressing activity  相似文献   
3.
Singh  Ashutosh  Singh  Rahul Soloman  Sarma  Phulen  Batra  Gitika  Joshi  Rupa  Kaur  Hardeep  Sharma  Amit Raj  Prakash  Ajay  Medhi  Bikash 《中国病毒学》2020,35(3):290-304
The recent outbreak of coronavirus disease(COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus(SARS-CoV) and Middle East respiratory syndrome coronavirus(MERSCoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.  相似文献   
4.
5.
Stop codon read-through (SCR) is a process of continuation of translation beyond a stop codon. This phenomenon, which occurs only in certain mRNAs under specific conditions, leads to a longer isoform with properties different from that of the canonical isoform. MTCH2, which encodes a mitochondrial protein that regulates mitochondrial metabolism, was selected as a potential read-through candidate based on evolutionary conservation observed in the proximal region of its 3′ UTR. Here, we demonstrate translational read-through across two evolutionarily conserved, in-frame stop codons of MTCH2 using luminescence- and fluorescence-based assays, and by analyzing ribosome-profiling and mass spectrometry (MS) data. This phenomenon generates two isoforms, MTCH2x and MTCH2xx (single- and double-SCR products, respectively), in addition to the canonical isoform MTCH2, from the same mRNA. Our experiments revealed that a cis-acting 12-nucleotide sequence in the proximal 3′ UTR of MTCH2 is the necessary signal for SCR. Functional characterization showed that MTCH2 and MTCH2x were localized to mitochondria with a long t1/2 (>36 h). However, MTCH2xx was found predominantly in the cytoplasm. This mislocalization and its unique C terminus led to increased degradation, as shown by greatly reduced t1/2 (<1 h). MTCH2 read-through–deficient cells, generated using CRISPR-Cas9, showed increased MTCH2 expression and, consistent with this, decreased mitochondrial membrane potential. Thus, double-SCR of MTCH2 regulates its own expression levels contributing toward the maintenance of normal mitochondrial membrane potential.  相似文献   
6.
7.
8.
9.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series (44 compounds) of diaryloxy-methano-phenanthrene derivatives as potent antitubercular agents. The best predictions were obtained with a CoMFA standard model (q (2)=0.625, r (2)=0.994) and with CoMSIA combined steric, electrostatic, and hydrophobic fields (q (2)=0.486, r (2)=0.986). Both models were validated by a test set of seven compounds and gave satisfactory predictive r (2) values of 0.999 and 0.745, respectively. CoMFA and CoMSIA contour maps were used to analyze the structural features of the ligands to account for the activity in terms of positively contributing physicochemical properties: steric, electrostatic, and hydrophobic fields. The information obtained from CoMFA and CoMSIA 3-D contour maps can be used for further design of phenanthrene-based analogs as anti-TB agents. The resulting contour maps, produced by the best CoMFA and CoMSIA models, were used to identify the structural features relevant to the biological activity in this series of analogs. Further analysis of these interaction-field contour maps also showed a high level of internal consistency. This study suggests that introduction of bulky and highly electronegative groups on the basic amino side chain along with decreasing steric bulk and electronegativity on the phenanthrene ring might be suitable for designing better antitubercular agents.  相似文献   
10.
Elastin-like polypeptides (ELPs) are artificial polypeptides with unique properties that make them attractive as a biomaterial for tissue-engineered cartilage repair. ELPs are composed of a pentapeptide repeat, Val-Pro-Gly-Xaa-Gly (Xaa is any amino acid except Pro), that undergo an inverse temperature phase transition. They are soluble in aqueous solution below their transition temperature (T(t)) but aggregate when the solution temperature is raised above their T(t). This study investigates the rheological behavior of an un-cross-linked ELP, below and above its T(t), and also examines the ability of ELP to promote chondrogenesis in vitro. A thermally responsive ELP with a T(t) of 35 degrees C was synthesized using recombinant DNA techniques. The complex shear modulus of the ELP increased by 3 orders of magnitude as it underwent its inverse temperature phase transition, forming a coacervate, or gel-like, ELP phase. Values for the complex shear moduli of the un-cross-linked ELP coacervate are comparable to those reported previously for collagen, hyaluronan, and cross-linked synthetic hydrogels. Cell culture studies show that chondrocytes cultured in ELP coacervate maintain a rounded morphology and their chondrocytic phenotype, characterized by the synthesis of a significant amount of extracellular matrix composed of sulfated glycosaminoglycans and collagen. These results suggest that ELPs demonstrate great potential for use as in situ forming scaffolds for cartilaginous tissue repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号