首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   1篇
  2022年   2篇
  2021年   3篇
  2019年   4篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   12篇
  2011年   5篇
  2010年   6篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1971年   1篇
  1970年   1篇
  1947年   1篇
  1945年   1篇
  1943年   1篇
  1937年   1篇
  1933年   1篇
  1931年   2篇
  1914年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
1.
Abstract: Neonatal rat primary astrocyte cultures were swollen by exposure to hypotonic buffer. Using an electrical impedance method for determination of cell volume coupled with on-line measurements of efflux of radioactive ions or amino acids, we have investigated the role of K+ (using 86Rb), taurine, and d -aspartate (an analogue of glutamate) in regulatory volume decrease (RVD). Addition of 1 m M quinine, 10 µ M nimodipine, 100 µ M BAPTA-AM, 10 µ M trifluoperazine, or a calcium-free buffer significantly ( p < 0.0001) inhibited RVD. This was accompanied by inhibition of 86Rb release but an increase in d -[3H]-aspartate release, which was proportional to the degree to which RVD was inhibited. These results support a regulatory role for calcium in RVD and show that inhibition of calcium entry from the extracellular fluid, intracellular calcium sequestration, inhibition of calcium-activated K+ channels, and inhibition of calmodulin all inhibit RVD. Because d -[3H]aspartate efflux profiles increase as RVD is inhibited, it is unlikely that d -aspartate release is a main determinant of RVD. In contrast, [3H]taurine release was increased by 1 m M quinine and inhibited by 10 µ M trifluoperazine. The net release of K+ and taurine is highly correlated with the degree of RVD, implicating a regulatory role for both K+ and taurine release in RVD.  相似文献   
2.
Neurochemical Research - Methylmercury (MeHg) exposure and its harmful effects on the developing brain continue to be a global environmental health concern. Decline in mitochondrial function is...  相似文献   
3.
4.
5.
Biological Trace Element Research - Manganese (Mn) is essential for several species and daily requirements are commonly met by an adequate diet. Mn overload may cause motor and psychiatric...  相似文献   
6.
Neurochemical Research - Manganese (Mn) overexposure is a public health concern due to its widespread industrial usage and the risk for environmental contamination. The clinical symptoms of Mn...  相似文献   
7.
Mercury (Hg) exposure remains a major public health concern due to its widespread distribution in the environment. Organic mercurials, such as MeHg, have been extensively investigated especially because of their congenital effects. In this context, studies on the molecular mechanism of MeHg-induced neurotoxicity are pivotal to the understanding of its toxic effects and the development of preventive measures. Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and acetylation are essential for the proper function of proteins and play important roles in the regulation of cellular homeostasis. The rapid and transient nature of many PTMs allows efficient signal transduction in response to stress. This review summarizes the current knowledge of PTMs in MeHg-induced neurotoxicity, including the most commonly PTMs, as well as PTMs induced by oxidative stress and PTMs of antioxidant proteins. Though PTMs represent an important molecular mechanism for maintaining cellular homeostasis and are involved in the neurotoxic effects of MeHg, we are far from understanding the complete picture on their role, and further research is warranted to increase our knowledge of PTMs in MeHg-induced neurotoxicity.  相似文献   
8.
We performed studies to determine whether chronic hypoxia impairs nitric oxide (NO) signaling in resistance level pulmonary arteries (PAs) of newborn piglets. Piglets were maintained in room air (control) or hypoxia (11% O(2)) for either 3 (shorter exposure) or 10 (longer exposure) days. Responses of PAs to a nonselective NO synthase (NOS) antagonist, N(omega)-nitro-L-arginine methylester (L-NAME), a NOS-2-selective antagonist, aminoguanidine, and 7-nitroindazole, a NOS-1-selective antagonist, were measured. Levels of NOS isoforms and of two proteins involved in NOS signaling, heat shock protein (HSP) 90 and caveolin-1, were assessed in PA homogenates. PAs from all groups constricted to L-NAME but not to aminoguanidine or 7-nitroindazole. The magnitude of constriction to L-NAME was similar for PAs from control and hypoxic piglets of the shorter exposure period but was diminished for PAs from hypoxic compared with control piglets of the longer exposure period. NOS-3, HSP90, and caveolin-1 levels were similar in hypoxic and control PAs. These findings indicate that NOS-3, but not-NOS 2 or NOS-1, is involved with basal NO production in PAs from both control and hypoxic piglets. After 10 days of hypoxia, NO function is impaired in PAs despite preserved levels of NOS-3, HSP90, and caveolin-1. The development of NOS-3 dysfunction in resistance level PAs may contribute to the progression of chronic hypoxia-induced pulmonary hypertension in newborn piglets.  相似文献   
9.
Manganese neurotoxicity and glutamate-GABA interaction   总被引:10,自引:0,他引:10  
Brain extracellular concentrations of amino acids (e.g. aspartate, glutamate, taurine) and divalent metals (e.g. zinc, copper, manganese) are primarily regulated by astrocytes. Adequate glutamate homeostasis is essential for the normal functioning of the central nervous system (CNS). Glutamate is of central importance for nitrogen metabolism and, along with aspartate, is the primary mediator of the excitatory pathways in the brain. Similarly, the maintenance of proper manganese levels is important for normal brain functioning. Several in vivo and in vitro studies have linked increased manganese concentrations with alterations in the content and metabolism of neurotransmitters, namely dopamine, gamma-aminobutyric acid, and glutamate. It has been reported by our laboratory and others, that cultured rat primary astrocytes exposed to manganese displayed decreased glutamate uptake, thereby increasing the excitotoxic potential of glutamate. Furthermore, decreased uptake of glutamate has been associated with decreased gene expression of glutamate:aspartate transporter (GLAST) in manganese-exposed astroctyes. Additional studies have suggested that attenuation of astrocytic glutamate uptake by manganese may be a consequence of reactive oxygen species (ROS) generation. Collectively, these data suggest that excitotoxicity may occur due to manganese-induced altered glutamate metabolism, representing a proximate mechanism for manganese-induced neurotoxicity.  相似文献   
10.
Mesenteric arteries from male Sprague-Dawley rats were mounted in a pressurized myograph system. Ang-(1-7) concentration-dependent responses were determined in arteries preconstricted with endothelin-1 (10(-7)M). The receptor(s) mediating the Ang-(1-7) evoked dilation were investigated by pretreating the mesenteric arteries with specific antagonists of Ang-(1-7), AT(1) or AT(2) receptors. The effects of Ang-(3-8) and Ang-(3-7) were also determined. Ang-(1-7) caused a concentration-dependent dilation (EC(50): 0.95 nM) that was blocked by the selective Ang-(1-7) receptor antagonist D-[Ala(7)]-Ang-(1-7). Administration of a specific antagonist to the AT(2) receptor (PD123319) had no effect. On the other hand, losartan and CV-11974 attenuated the Ang-(1-7) effect. These results demonstrate that Ang-(1-7) elicits potent dilation of mesenteric resistance vessels mediated by a D-[Ala(7)]-Ang-(1-7) sensitive site that is also sensitive to losartan and CV-11974.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号