首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2023年   3篇
  2022年   2篇
  2003年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
In soil biota, higher and enduring concentration of heavy metals like cadmium (Cd) is hazardous and associated with great loss in growth, yield, and quality parameters of most of the crop plants. Recently, in-situ applications of eco-friendly stabilizing agents in the form of organic modifications have been utilized to mitigate the adverse effects of Cd-toxicity. This controlled experiment was laid down to appraise the imprints of various applied organic amendments namely poultry manure (PM), farmyard manure (FYM), and sugarcane press mud (PS) to immobilize Cd in polluted soil. Moreover, phytoavailability of Cd in wheat was also accessed under an alkaline environment. Results revealed that the addition of FYM (5–10 ton ha-1 ) in Cd-contaminated soil significantly increased germination rate, leaf chlorophyll content, plant height, spike length, biological and grain yield amongst all applied organic amendments. Moreover, the addition of FYM (5–10 ton ha-1 ) also reduced the phytoavailability of Cd by 73–85% in the roots, 57–83% in the shoots, and 81–90% in grains of wheat crop. Thus, it is affirmed that incorporation of FYM (5–10 ton ha-1 ) performed better to enhance wheat growth and yield by remediating Cd. Thus, the application of FYM (5–10 ton ha-1 ) reduced the toxicity induced by Cd to plants by declining its uptake and translocation as compared to all other applied organic amendments to immobilize Cd under sandy alkaline polluted soil.  相似文献   
2.
A new fluorescent zinc (II) complex-based probe 1 encompassing a Schiff's base (E)-2-methoxy-6-((2-[5-nitropyridin-2-ylamino]ethylimino)methyl)phenol ( HL ) was designed, synthesized, and used for the highly selective detection of Cu2+. Ligand HL and complex 1 were characterized using various spectroscopic techniques such as 1H, 13C-NMR, and FTIR spectroscopy, high-resolution mass spectronomy (HRMS), UV/visible light spectroscopy, and fluorescence studies. Ligand HL did not exhibit any considerable change in fluorescence in the presence of various cations. Notably, its Zn(II) complex 1 exhibited highly selective ‘TURN-OFF’ fluorescence signalling towards Cu2+ that remained uninterrupted with competing analytes. Probe 1 interacted with Cu2+ in 1:2 (1:Cu2+) stoichiometry as estimated through a Job's plot. Moreover, the selectivity of 1 was further confirmed through the interaction of the 1 + Cu2+ complex with some possible interfering metal ions inducing an insignificant response. Additionally, the association and quenching constant were determined to be 3.30 × 104 M−1 and 0.21 × 105 M−1 through the Benesi–Hildebrand method and Stern–Volmer plot, respectively.  相似文献   
3.
Cellular and Molecular Neurobiology - Histone deacetylases (HDACs) have been described to have both neurotoxic and neuroprotective roles, and partly, depend on its sub-cellular distribution. HDAC...  相似文献   
4.
5.
6.
Design, synthesis, characterization, and ion detection studies of two ferrocene-appended Schiff bases namely N-(2-[ferrocenylamino]ethyl)-5-nitropyridin-2-amine ( 1 ) and ferrocenylamino-1H-imidazole-4-carboxamide ( 2 ) been reported. Both the chemosensors have been thoroughly characterized using Fourier transfer infrared, 1H and 13C nuclear magnetic resonance, high resolution mass spectrometry, and ultraviolet/visible (UV/visible) and fluorescence spectral techniques. Probes 1 and 2 were designed with the aim of appending the ferrocenyl group with pyridine ring having an amine substitution (for 1 ) and imidazole ring with an amide substitution (for 2 ). Interaction of these probes with a series of cations and anions was examined through UV/vis and fluorescence spectral techniques. Probe 2 exhibited an insignificant response towards anions and loss of selectivity for cations, whereas 1 displayed highly selective detection towards biologically important Fe3+ in 2:1 (probe:cation) stoichiometry. Notably, none of the cations and anions could interfere the selectivity of Fe3+ ensured by 1 in aqueous medium. The limit of detection for Fe3+ detection using 1 was determined to be 0.2 ppm. The results strongly suggest that 1 could find promising future application as a chemosensor for Fe3+ in biological systems for quantification and qualitative analysis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号