首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   5篇
  2023年   5篇
  2022年   1篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   13篇
  2014年   7篇
  2013年   11篇
  2012年   6篇
  2011年   8篇
  2010年   7篇
  2009年   8篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1980年   3篇
  1978年   1篇
排序方式: 共有136条查询结果,搜索用时 281 毫秒
1.
Drug-induced liver injury (DILI) is an adverse outcome of the currently used tuberculosis treatment regimen, which results in patient noncompliance, poor treatment outcomes, and the emergence of drug-resistant tuberculosis. DILI is primarily caused by the toxicity of the drugs and their metabolites, which affect liver cells, biliary epithelial cells, and liver vasculature. However, the precise mechanism behind the cellular damage attributable to first-line antitubercular drugs (ATDs), as well as the effect of toxicity on the cell survival strategies, is yet to be elucidated. In the current study, HepG2 cells upon treatment with a high concentration of ATDs showed increased perforation within the cell, cuboidal shape, and membrane blebbing as compared with control/untreated cells. It was observed that ATD-induced toxicity in HepG2 cells leads to altered mitochondrial membrane permeability, which was depicted by the decreased fluorescence intensity of the MitoRed tracker dye at higher drug concentrations. In addition, high doses of ATDs caused cell damage through an increase in reactive oxygen species production in HepG2 cells and a simultaneous reduction in glutathione levels. Further, high dose of isoniazid (50–200 mM), pyrazinamide (50–200 mM), and rifampicin (20–100 µM) causes cell apoptosis and affects cell survival during toxic conditions by decreasing the expression of potent autophagy markers Atg5, Atg7, and LC3B. Thus, ATD-mediated toxicity contributes to the reduced ability of hepatocytes to tolerate cellular damage caused by altered mitochondrial membrane permeability, increased apoptosis, and decreased autophagy. These findings further emphasize the need to develop adjuvant therapies that can mitigate ATD-induced toxicity for the effective treatment of tuberculosis.  相似文献   
2.
3.
Acarbose blocks the digestion of complex carbohydrates, and the NIA Intervention Testing Program (ITP) found that it improved survival when fed to mice. Yet, we do not know if lifespan extension was caused by its effect on metabolism with regard to the soma or cancer suppression. Cancer caused death for ~80% of ITP mice. The ITP found rapamycin, an inhibitor to the pro‐growth mTORC1 (mechanistic target of rapamycin complex 1) pathway, improved survival and it suppressed tumors in Apc+/Min mice providing a plausible rationale to ask if acarbose had a similar effect. Apc+/Min is a mouse model prone to intestinal polyposis and a mimic of familial adenomatous polyposis in people. Polyp‐associated anemia contributed to their death. To address this knowledge gap, we fed two doses of acarbose to Apc+/Min mice. Acarbose improved median survival at both doses. A cross‐sectional analysis was performed next. At both doses, ACA fed mice exhibited reduced intestinal crypt depth, weight loss despite increased food consumption and reduced postprandial blood glucose and plasma insulin, indicative of improved insulin sensitivity. Dose‐independent and dose‐dependent compensatory liver responses were observed for AMPK and mTORC1 activities, respectively. Only mice fed the high dose diet exhibited reductions in tumor number with higher hematocrits. Because low‐dose acarbose improved lifespan but failed to reduced tumors, its effects seem to be independent of cancer. These data implicate the importance of improved carbohydrate metabolism on survival.  相似文献   
4.
Chromosomal abnormalities are seen in nearly 1% of live born infants. We report a 5-year-old boy with the clinical features of Down syndrome, which is the most common human aneuploidy. Cytogenetic analysis showed a mosaicism for a double aneuploidy, Down syndrome and XYY. The karyotype was 47, XY,+21[19]/48, XYY,+21[6]. ish XYY (DXZ1 × 1, DYZ1 × 2). Mosaic double aneuploidies are very rare and features of only one of the aneuploidies may predominate in childhood. Cytogenetic analysis is recommended even if the typical features of a recognized aneuploidy are present so that any associated abnormality may be detected. This will enable early intervention to provide the adequate supportive care and management.  相似文献   
5.
Genetic influences on alcohol and drug dependence partially overlap, however, specific loci underlying this overlap remain unclear. We conducted a genome‐wide association study (GWAS) of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7291 European‐Americans (EA; 2927 cases) and 3132 African‐Americans (AA: 1315 cases) participating in the family‐based Collaborative Study on the Genetics of Alcoholism. ANYDEP was heritable (h 2 in EA = 0.60, AA = 0.37). The AA GWAS identified three regions with genome‐wide significant (GWS; P < 5E‐08) single nucleotide polymorphisms (SNPs) on chromosomes 3 (rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion‐deletion on chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region (chromosome 1: rs1890881) emerged from a trans‐ancestral meta‐analysis (EA + AA) of ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, DZIP3, SBK3; EA: P2RX6) and four sets of genes were significantly enriched within biological pathways for hemostasis and signal transduction. GWS signals did not replicate in two independent samples but there was weak evidence for association between rs1890881 and alcohol intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics Study, rs75168521 and rs1890881 genotypes were associated with variability in reward‐related ventral striatum activation. This study identified novel loci for substance dependence and provides preliminary evidence that these variants are also associated with individual differences in neural reward reactivity. Gene discovery efforts in non‐European samples with distinct patterns of substance use may lead to the identification of novel ancestry‐specific genetic markers of risk.  相似文献   
6.
2-Amino-4-azaindoles have been identified as a structurally novel class of BK(Ca) channel openers. Their synthesis from 2-chloro-3-nitropyridine is described together with their in vitro properties assessed by 86Rb(+) efflux and whole-cell patch-clamp assays using HEK293 cells stably transfected with the BK(Ca) alpha subunit. In vitro functional characterization of BK(Ca) channel opening activity was also assessed by measurement of relaxation of smooth muscle tissue strips obtained from Landrace pig bladders. The preliminary SAR data indicate the importance of steric bulk around the 2-amino substituent.  相似文献   
7.

Background

Genetic and environmental factors contribute to the pathophysiology of irritable bowel syndrome (IBS). In particular, early adverse life events (EALs) and the catecholaminergic system have been implicated.

Aims

To investigate whether catecholaminergic SNPs with or without interacting with EALs are associated with: 1) a diagnosis of IBS, 2) IBS symptoms and 3) morphological alterations in brain regions associated with somatosensory, viscerosensory, and interoceptive processes.

Methods

In 277 IBS and 382 healthy control subjects (HCs), 11 SNPs in genes of the catecholaminergic signaling pathway were genotyped. A subset (121 IBS, 209 HCs) underwent structural brain imaging (magnetic resonance imaging [MRI]). Logistic and linear regressions evaluated each SNP separately and their interactions with EALs in predicting IBS and GI symptom severity, respectively. General linear models determined grey matter (GM) alterations from the SNPs and EALs that were predictive of IBS.

Results

1) Diagnosis: There were no statistically significant associations between the SNPs and IBS status with or without the interaction with EAL after adjusting for multiple comparisons. 2) Symptoms: GI symptom severity was associated with ADRA1D rs1556832 (P = 0.010). 3) Brain morphometry: In IBS, the homozygous genotype of the major ADRA1D allele was associated with GM increases in somatosensory regions (FDR q = 0.022), left precentral gyrus (q = 0.045), and right hippocampus (q = 0.009). In individuals with increasing sexual abuse scores, the ADRAβ2 SNP was associated with GM changes in the left posterior insula (q = 0.004) and left putamen volume (q = 0.029).

Conclusion

In IBS, catecholaminergic SNPs are associated with symptom severity and morphological changes in brain regions concerned with sensory processing and modulation and affect regulation. Thus, certain adrenergic receptor genes may facilitate or worsen IBS symptoms.  相似文献   
8.
9.
Classical activation of macrophages (caMph or M1) is crucial for host protection against Mycobacterium tuberculosis (Mtb) infection. Evidence suggests that IL-4/IL-13 alternatively activated macrophages (aaMph or M2) are exploited by Mtb to divert microbicidal functions of caMph. To define the functions of M2 macrophages during tuberculosis (TB), we infected mice deficient for IL-4 receptor α on macrophages (LysMcreIL-4Rα-/lox) with Mtb. We show that absence of IL-4Rα on macrophages does not play a major role during infection with Mtb H37Rv, or the clinical Beijing strain HN878. This was demonstrated by similar mortality, bacterial burden, histopathology and T cell proliferation between infected wild-type (WT) and LysMcreIL-4Rα-/lox mice. Interestingly, we observed no differences in the lung expression of inducible nitric oxide synthase (iNOS) and Arginase 1 (Arg1), well-established markers for M1/M2 macrophages among the Mtb-infected groups. Kinetic expression studies of IL-4/IL-13 activated bone marrow-derived macrophages (BMDM) infected with HN878, followed by gene set enrichment analysis, revealed that the MyD88 and IL-6, IL-10, G-CSF pathways are significantly enriched, but not the IL-4Rα driven pathway. Together, these results suggest that IL-4Rα-macrophages do not play a central role in TB disease progression.  相似文献   
10.

Background

Ceramides are intracellular lipid mediator implicated in various cellular responses, including oxidative stress and programmed cell death. Studies demonstrated strong links between ceramide and the mitochondria in the regulation of apoptosis. However, the mechanism of apoptosis induced by ceramides is not fully understood. The present study delineates importance of the redox state of cytochrome c for release of cytochrome c and apoptosis of human mammary adenocarcinoma MCF-7 and MDA-MB-231 cells induced by ceramides.

Methods

The study uses MCF-7 and MDA-MB-231 cells, isolated mitochondria, submitochondrial particles, and oxidized and reduced cytochrome c. Methods used include flow cytometry, immunoblotting, spectroscopy, and respirometry.

Results

We show that ceramides induce mitochondrial oxidative stress and release of cytochrome c from the mitochondria of these cells. Our findings show that ceramides react with oxidized cytochrome c whereas reduced cytochrome c does not react with ceramides. We also show that oxidized cytochrome c reacted with ceramides exerts lower reducibility and function to support mitochondrial respiration. Furthermore, our data show that glutathione protects cytochrome c of reacting with ceramides by increasing the reduced state of cytochrome c.

Conclusions

Ceramides induce oxidative stress and apoptosis in human mammary adenocarcinoma cells by interacting with oxidized cytochrome c leading to the release of cytochrome c from the mitochondria. Our findings suggest a novel mechanism for protective role of glutathione.

General significance

Our study suggests that the redox state of cytochrome c is important in oxidative stress and apoptosis induced by ceramides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号