首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   15篇
  国内免费   2篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   5篇
  2010年   14篇
  2009年   10篇
  2008年   8篇
  2007年   1篇
  2006年   6篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   2篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   4篇
  1985年   1篇
  1982年   1篇
  1975年   1篇
  1969年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
1.
The ATP-binding-cassette transmembrane transporters (ABC transporters) known from vertebrates belong to four major subfamilies: (1) the P- glycoproteins (Pgp); (2) the cystic fibrosis transmembrane conductance regulators (CFTR); (3) the Tap proteins encoded with the major histocompatibility complex of mammals; and (4) the peroxisomal membrane proteins. Both Pgp and CFTR have a structure suggesting a past internal gene duplication; a phylogenetic analysis indicated that these duplications occurred independently, while an independent tandem gene duplication occurred in the case of the Tap family. Both the Pgp and Tap proteins show evidence of relationship to bacterial ABC transporters lacking internal duplication, and both are significantly more closely related to the HlyB and MsbA families of transporters from purple bacteria than they are to ABC transporters from nonpurple bacteria. The simplest hypothesis to explain this observation is that eukaryotic Pgp and Tap genes are descended from a mitochondrial gene or genes that were subsequently translocated to the nuclear genome. The Pgp genes of eukaryotes are characterized by a remarkable degree of convergent evolution between the ATP-binding cassettes of their N- terminal and C-terminal halves, whereas no such convergence is seen between the two halves of CFTR genes or between the duplicated Tap genes. Exon 13 of the CFTR gene, which encodes a putative regulatory domain not found in other ABC transporters apart from CFTR, showed high levels of both synonymous and nonsynonymous difference in comparisons among different mammalian species, suggesting that this region is a mutational hot spot.   相似文献   
2.
3.
Streptomyces glaucescens is shown to possess -lactamase activity which is inhibitable by clavulanate. This is important in regard to its use as a cloning host for enzymes of \-lactam biosynthesis.  相似文献   
4.
The nearest 5' context of 2559 human stop codons was analysed in comparison with the same context of stop-like codons (UGG, UGC, UGU, CGA for UGA; CAA, UAU, UAC for UAA; and UGG, UAU, UAC, CAG for UAG). The non-random distribution of some nucleotides upstream of the stop codons was observed. For instance, uridine is over-represented in position -3 upstream of UAG. Several codons were shown to be over-represented immediately upstream of the stop codons: UUU(Phe), AGC(Ser), and the Lys and Ala codon families before UGA; AAG(Lys), GCG(Ala), and the Ser and Leu codon families before UAA; and UCA(Ser), AUG(Met), and the Phe codon family before UAG. In contrast, the Thr and Gly codon families were under-represented before UGA, while ACC(Thr) and the Gly codon family were under-represented before UAG and UAA respectively. In an earlier study, uridine was shown to be over-represented in position -3 before UGA in Escherichia coli [Arkov,A.L., Korolev,S.V. and Kisselev,L.L. (1993) Nucleic Acids Res., 21,2891-2897]. In that study, the codons for Lys, Phe and Ser were shown to be over-represented immediately upstream of E. coli stop codons. Consequently, E. coli and human termination codons have similar 5' contexts. The present study suggests that the 5' context of stop codons may modulate the efficiency of peptide chain termination and (or) stop codon readthrough in higher eukaryotes, and that the mechanisms of such a modulation in prokaryotes and higher eukaryotes may be very similar.  相似文献   
5.

The Shear-slip Mesh Update Method (SSMUM) is being used in flow simulations involving large but regular displacements of one or more boundaries of the computational domain. We follow up the earlier discussion of the method with notes on practical implementation aspects. In order to establish a benchmark problem for this class of flow problems, we define and report results from a two-dimensional viscous flow around a rotating stirrer in a square chamber. The application potential of the method is demonstrated in the context of biomedical design problem, as we perform an analysis of blood flow in a centrifugal left ventricular assist device, or blood pump, which involves a rotating impeller in a non-axisymmetric housing.  相似文献   
6.
7.
To help ensure the ethical conduct of research, many have recommended educational efforts in research ethics to investigators and members of research ethics committees (RECs). One type of education activity involves multi‐day workshops in research ethics. To be effective, such workshops should contain the appropriate content and teaching techniques geared towards the learning styles of the targeted audiences. To ensure consistency in content and quality, we describe the development of a curriculum guide, core competencies and associated learning objectives and activities to help educators organize research ethics workshops in their respective institutions. The curriculum guide is divided into modular units to enable planners to develop workshops of different lengths and choose content materials that match the needs, abilities, and prior experiences of the target audiences. The content material in the curriculum guide is relevant for audiences in the Middle East, because individuals from the Middle East who participated in a Certificate Program in research ethics selected and developed the training materials (e.g., articles, powerpoint slides, case studies, protocols). Also, many of the activities incorporate active‐learning methods, consisting of group work activities analyzing case studies and reviewing protocols. The development of such a workshop training curriculum guide represents a sustainable educational resource to enhance research ethics capacity in the Middle East.  相似文献   
8.
Nucleotide 1093 in domain II of Escherichia coli 23S rRNA is part of a highly conserved structure historically referred to as the GTPase center. The mutation G1093A was previously shown to cause readthrough of nonsense codons and high temperature-conditional lethality. Defects in translation termination caused by this mutation have also been demonstrated in vitro. To identify sites in 23S rRNA that may be functionally associated with the G1093 region during termination, we selected for secondary mutations in 23S rRNA that would compensate for the temperature-conditional lethality caused by G1093A. Here we report the isolation and characterization of such a secondary mutation. The mutation is a deletion of two consecutive nucleotides from helix 73 in domain V, close to the peptidyltransferase center. The deletion results in a shortening of the CGCG sequence between positions 2045 and 2048 by two nucleotides to CG. In addition to restoring viability in the presence of G1093A, this deletion dramatically decreased readthrough of UGA nonsense mutations caused by G1093A. An analysis of the amount of mutant rRNA in polysomes revealed that this decrease cannot be explained by an inability of G1093A-containing rRNA to be incorporated into polysomes. Furthermore, the deletion was found to cause UGA readthrough on its own, thereby implicating helix 73 in termination for the first time. These results also indicate the existence of a functional connection between the G1093 region and helix 73 during translation termination.  相似文献   
9.
Early studies provided evidence that peptide-chain release factors (RFs) bind to both ribosomal subunits and trigger translation termination. Although many ribosomal proteins have been implicated in termination, very few data present direct biochemical evidence for the involvement of rRNA. Particularly absent is direct evidence for a role of a large subunit rRNA in RF binding. Previously we demonstrated in vitro that mutations in Escherichia coli rRNAs, known to cause nonsense codon readthrough in vivo, reduce the efficiency of RF2-driven catalysis of peptidyl-tRNA hydrolysis. This reduction was consistent with the idea that in vivo defective termination at the mutant ribosomes contributes to the readthrough. Nevertheless, other explanations were also possible, because still missing was essential biochemical evidence for that idea, namely, decrease in productive association of RFs with the mutant ribosomes. Here we present such evidence using a new realistic in vitro termination assay. This study directly supports in vivo involvement in termination of conserved rRNA regions that also participate in other translational events. Furthermore, this study provides the first strong evidence for involvement of large subunit rRNA in RF binding, indicating that the same rRNA region interacts with factors that determine both elongation and termination of translation.  相似文献   
10.
There are 10 gene families that have members on both human chromosome 6 (6p21.3, the location of the human major histocompatibility complex [MHC]) and human chromosome 9 (mostly 9q33-34). Six of these families also have members on mouse chromosome 17 (the mouse MHC chromosome) and mouse chromosome 2. In addition, four of these families have members on human chromosome 1 (1q21-25 and 1p13), and two of these have members on mouse chromosome 1. One hypothesis to explain these patterns is that members of the 10 gene families of human chromosomes 6 and 9 were duplicated simultaneously as a result of polyploidization or duplication of a chromosome segment ("block duplication"). A subsequent block duplication has been proposed to account for the presence of representatives of four of these families on human chromosome 1. Phylogenetic analyses of the 9 gene families for which data were available decisively rejected the hypothesis of block duplication as an overall explanation of these patterns. Three to five of the genes on human chromosomes 6 and 9 probably duplicated simultaneously early in vertebrate history, prior to the divergence of jawed and jawless vertebrates, and shortly after that, all four of the genes on chromosomes 1 and 9 probably duplicated as a block. However, the other genes duplicated at different times scattered over at least 1.6 billion years. Since the occurrence of these clusters of related genes cannot be explained by block duplication, one alternative explanation is that they cluster together because of shared functional characteristics relating to expression patterns.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号