首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   17篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   13篇
  2014年   11篇
  2013年   16篇
  2012年   13篇
  2011年   14篇
  2010年   8篇
  2009年   6篇
  2008年   3篇
  2007年   5篇
  2006年   12篇
  2005年   8篇
  2004年   5篇
  2003年   10篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1993年   1篇
  1991年   2篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
排序方式: 共有183条查询结果,搜索用时 31 毫秒
1.
Capture and long‐distance translocation of cleaner fish to control lice infestations on marine salmonid farms has the potential to influence wild populations via overexploitation in source regions, and introgression in recipient regions. Knowledge of population genetic structure is therefore required. We studied the genetic structure of ballan wrasse, a phenotypically diverse and extensively used cleaner fish, from 18 locations in Norway and Sweden, and from Galicia, Spain, using 82 SNP markers. We detected two very distinct genetic groups in Scandinavia, northwestern and southeastern. These groups were split by a stretch of sandy beaches in southwest Norway, representing a habitat discontinuity for this rocky shore associated benthic egg‐laying species. Wrasse from Galicia were highly differentiated from all Scandinavian locations, but more similar to northwestern than southeastern locations. Distinct genetic differences were observed between sympatric spotty and plain phenotypes in Galicia, but not in Scandinavia. The mechanisms underlying the geographic patterns between phenotypes are discussed, but not identified. We conclude that extensive aquaculture‐mediated translocation of ballan wrasse from Sweden and southern Norway to western and middle Norway has the potential to mix genetically distinct populations. These results question the sustainability of the current cleaner fish practice.  相似文献   
2.
Indole-3-acetic acid (IAA) and indole-3-ethanol (IEt) were identified in immature seeds of Pinus sylvestris L. by combined gas chromatography-mass spectrometry. Indole-3-methanol was tentatively identified using multiple ion monitoring. Anatomical investigations of seeds, as well as measurements of free and alkali-hydrolysable IAA and IEt, were made during seed development and germination. Levels of free IAA and IEt decreased during seed development. In the later stages of seed maturation most IAA and IEt were present in alkali-hydrolysable forms. Bound IAA and bound IEt rapidly decreased during germination, while levels of free IAA and IEt increased dramatically for a short period.  相似文献   
3.
Seeds from mature flowers of Heracleum laciniatum were collected locally (Tromsø, Norway). Seed coats were removed and the seeds were analyzed for their content of free, free plus ester-conjugate, and total indole-3-acetic acid (IAA) by quantitative gas chromatography-mass spectrometry. Seeds contained high levels of free and amide-linked IAA relative to other dicotyledonous seeds for which values have been published. The major amide conjugate in this material was identified as indole-3-acetylaspartate by gas chromatography-mass spectrometry of its bis-methyl ester.  相似文献   
4.
5.
Seedlings of Pinus sylvestris were grown for 6 weeks under natural light conditions in a temperature controlled environment room. Cuttings from these plants were rooted in tap water or in indolebutyric acid (IBA) solutions for 60 days at an irradiance of 16 W m-2. Experiments were performed at 3-week intervals during two growth seasons. — Seasonal changes in root formation were found in control cuttings as well as in IBA treated cuttings. The number of roots and the percentage of cuttings that rooted were high during early spring and autumn. During the summer period hardly any roots were formed. Stimulation of root formation by IBA occurred manily during spring and autumn when cuttings already possessed the ability to form roots. — The influence of photoperiod during stock plant growth was also investigated. Shorter photoperiod resulted in an increase in the number of roots and rooting percentage. The period during summer where rooting was inhibited under natural light conditions was considerably shortened when stock plants were grown at a photoperiod of only 4 h. The results demonstrate the importance of the growing conditions for stock plants for subsequent root formation. The results are discussed with special reference to the role of irradiance.  相似文献   
6.
Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km?1) than spatial turnover in growing‐season GiT (0.18 °C km?1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.  相似文献   
7.
Migratory divides are thought to facilitate behavioral, ecological, and genetic divergence among populations with different migratory routes. However, it is currently contentious how much genetic divergence is needed to maintain distinct migratory behavior across migratory divides. Here we investigate patterns of neutral genetic differentiation among Blackcap (Sylvia atricapilla) populations with different migratory strategies across Europe. We compare the level of genetic divergence of populations migrating to southwestern (SW) or southeastern (SE) wintering areas with birds wintering in the British Isles following a recently established northwesterly (NW) migration route. The migratory divide between SW and SE wintering areas can be interpreted as a result of a re-colonization process after the last glaciation. Thus we predicted greater levels of genetic differentiation among the SW/SE populations. However, a lack of genetic differentiation was found between SW and SE populations, suggesting that interbreeding likely occurs among Blackcaps with different migratory orientations across a large area; therefore the SW/SE migratory divide can be seen as diffuse, broad band and is, at best, a weak isolating barrier. Conversely, weak, albeit significant genetic differentiation was evident between NW and SW migrants breeding sympatrically in southern Germany, suggesting a stronger isolating mechanism may be acting in this population. Populations located within/near the SW/SE contact zone were the least genetically divergent from NW migrants, confirming NW migrants likely originated from within the contact zone. Significant isolation-by-distance was found among eastern Blackcap populations (i.e. SE migrants), but not among western populations (i.e. NW and SW migrants), revealing different patterns of genetic divergence among Blackcap populations in Europe. We discuss possible explanations for the genetic structure of European Blackcaps and how gene flow influences the persistence of divergent migratory behaviors.  相似文献   
8.
Atlantic bluefin tuna is an iconic scombrid species with a high commercial and ecological value. Despite their importance, many physiological aspects, especially during the larval stages, are still unknown. Metabolic rates are one of the understudied aspects in scombrid larvae, likely due to challenges associated to larval handling before and during respirometry trials. Gaining reliable estimates of metabolic rates is essential to understand how larvae balance their high growth needs and activity and other physiological functions, which can be very useful for fisheries ecology and aquaculture. This is the first study to (a) estimate the relationship between routine metabolic rate (RMR) and larval dry weight (DW) (mass scaling exponent) at a constant temperature of 26°C, (b) measure the RMR under light and darkness and (c) test whether the interindividual differences in the RMR are related to larval nutritional status (RNA/DNA and DNA/DW). The RMR scaled nearly isometrically with body size (b = 0.99, 0.60–31.56 mg DW) in contrast to the allometric relationship observed in most fish larvae (average b = 0.87). The results show no significant differences in larval RMR under light and darkness, suggesting similar larval activity levels in both conditions. The size explained most of the variability in RMR (97%), and nutritional condition was unrelated to the interindividual differences in routine metabolism. This is the first study to report the metabolic rates of Atlantic bluefin tuna larvae and discuss the challenges of performing bioenergetic studies with early life stages of scombrids.  相似文献   
9.
Satellite cells can be isolated from skeletal muscle biopsies, activated to proliferating myoblasts and differentiated into multinuclear myotubes in culture. These cell cultures represent a model system for intact human skeletal muscle and can be modulated ex vivo. The advantages of this system are that the most relevant genetic background is available for the investigation of human disease (as opposed to rodent cell cultures), the extracellular environment can be precisely controlled and the cells are not immortalized, thereby offering the possibility of studying innate characteristics of the donor. Limitations in differentiation status (fiber type) of the cells and energy metabolism can be improved by proper treatment, such as electrical pulse stimulation to mimic exercise. This review focuses on the way that human myotubes can be employed as a tool for studying metabolism in skeletal muscles, with special attention to changes in muscle energy metabolism in obesity and type 2 diabetes.  相似文献   
10.
Passerine birds show large interspecific variation in extrapair paternity rates. There is accumulating evidence that such promiscuous behavior is driven by indirect, genetic benefits to females. Sexual selection theory distinguishes between two types of genetic benefits, additive and nonadditive effects, mediated by preferences for good and compatible genes, respectively. Good genes preferences should imply directional selection and mating skew among males, and thus reduced genetic diversity in the population. In contrast, compatible genes preferences should give balancing selection that retains genetic diversity. Here, we test how well these predictions fit with patterns of variation in genetic diversity and promiscuity levels among passerine birds. We found that more promiscuous species had higher nucleotide diversity at autosomal introns, but not at Z‐chromosome introns. We also found that major histocompatibility complex (MHC) class IIB alleles had higher sequence diversity, and therefore should recognize a broader spectrum of pathogens, in more promiscuous species. Our results suggest that female promiscuity targets a multitude of autosomal genes for their nonadditive, compatibility benefits. Also, as immunity genes seem to be of particular importance, we hypothesize that interspecific variation in female promiscuity among passerine birds has arisen in response to the strength of pathogen‐mediated selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号