首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   4篇
  156篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   10篇
  2014年   9篇
  2013年   15篇
  2012年   17篇
  2011年   14篇
  2010年   9篇
  2009年   8篇
  2008年   11篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1987年   1篇
  1982年   1篇
  1976年   1篇
  1957年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
1.
Laha S  Petrova KP 《Biodegradation》1997,8(5):349-356
The Everglades in South Florida are a unique ecological system. As a result of the widespread use of pesticides and herbicides in agricultural areas upstream from these wetlands, there is a serious potential for pollution problems in the Everglades. The purpose of this study was to evaluate the ability of indigenous microbial populations to degrade xenobiotic organic compounds introduced by agricultural and other activities. Such biodegradation may facilitate the remediation of contaminated soils and water in the Everglades. The model compound selected in this study is 4-nitrophenol, a chemical commonly used in the manufacture of pesticides. The mineralization of 4-nitrophenol at various concentrations was studied in soils collected from the Everglades. At concentrations of 10 and 100 microg/g soil, considerable mineralization occurred within a week. At a higher concentration, i.e., 10 mg/g soil, however, no mineralization of 4-nitrophenol occurred over a 4-month period; such a high concentration apparently produced an inhibitory effect. The rate and extent of 4-nitrophenol mineralization was enhanced on inoculation with previously isolated nitrophenol-degrading microorganisms. The maximum mineralization extent measured, however, was less than 30% suggesting conversion to biomass and/or unidentified intermediate products. These results indicate the potential for natural mechanisms to mitigate the adverse effects of xenobiotic pollutants in a complex system such as the Everglades.  相似文献   
2.
The solubilization and mineralization of (14)C-phenanthrene in soil-water systems was examined with several commercially available surface-active agents, viz., an alkyl ethoxylate C(12)E(4); two alkylphenol ethoxylate surfactants: C(8)PE(9.5) and C(9)PE(10.5); two sorbitan ethoxylate surfactants: the sorbitan monolaurate (Tween 20) and the sorbitan monooleate (Tween 80); two pairs of nonionic ethoxylate surfactant mixtures: C(12)E(4)/C(12)E(23) at a 1:1 ratio, and C(12-15)E(3)/C(12-15)E(9) at a 1:3 ratio; and two surfactants possessing relatively high critical micelle concentration (CMC) values and low aggregation numbers: CHAPS and octyglucoside. Surface tension experiments were performed to evaluate surfactant sorption onto soil and the surfactant doses required to attain the CMC in the soil-water systems. Surfactant solubilization of (14)C-phenanthrene commenced with the onset of micellization. The addition of surface-active agents was observed not to be beneficial to the microbial mineralization of phenanthrene in the soil-water systems and, for supra-CMC surfactant doses, phenanthrene mineralization was completely inhibited for all the surfactants tested. A comparison of solubilization, surface tension, and mineralization data confirms that the inhibitory effect on microbial degradation of phenanthrene is related to the CMC of the surfactant in the presence of soil. Additional tests demonstrated the recovery of mineralization upon dilution of surfactant concentration to sub-CMC levels, and a relatively high exit rate for phenanthrene from micelles. These tests suggest that the inhibitory effect is probably related to a reversible physiological surfactant micelle-bacteria interaction, possibly through partial complexing or release of membrane material with disrupting membrane lamellar structure. This study indicates that nonionic surfactant solubilization of sorbed hydrophobic organic compounds from soil may not be beneficial for the concomitant enhancement of soil bioremediation. Additional work is needed to address physicochemical processes for bioavailability enhancement, and effects of solubilizing agents on microorganisms for remediation and treatment of hydrophobic organic compounds and nonaqueous phase liquids. (c) 1992 John Wiley & Sons Inc.  相似文献   
3.
4.
Mutations in REarranged during Transfection (RET) receptor tyrosine, followed by the oncogenic activation of RET kinase is responsible for the development of medullary thyroid carcinoma (MTC) that responds poorly to conventional chemotherapy. Targeting RET, therefore, might be useful in tailoring surveillance of MTC patients. Here we showed that theaflavins, the bioactive components of black tea, successfully induced apoptosis in human MTC cell line, TT, by inversely modulating two molecular pathways: (i) stalling PI3K/Akt/Bad pathway that resulted in mitochondrial transmembrane potential (MTP) loss, cytochrome-c release and activation of the executioner caspases-9 and -3, and (ii) upholding p38MAPK/caspase-8/caspase-3 pathway via inhibition of Ras/Raf/ERK. Over-expression of either constitutively active myristoylated-Akt-cDNA (Myr-Akt-cDNA) or dominant-negative-caspase-8-cDNA (Dn-caspase-8-cDNA) partially blocked theaflavin-induced apoptosis, while co-transfection of Myr-Akt-cDNA and Dn-caspase-8-cDNA completely eradicated the effect of theaflavins thereby negating the possibility of existence of other pathways. A search for the upstream signaling revealed that theaflavin-induced disruption of lipid raft caused interference in anchorage of RET in lipid raft that in turn stalled phosphorylation of Ras and PI3Kinase. In such anti-survival cellular micro-environment, pro-apoptotic signals were triggered to culminate into programmed death of MTC cell. These findings not only unveil a hitherto unexplained mechanism underlying theaflavin-induced MTC death, but also validate RET as a promising and potential target for MTC therapy.  相似文献   
5.
Highly fluorescent nitrogen and phosphorus‐doped carbon dots with a quantum yield 59% have been successfully synthesized from citric acid and di‐ammonium hydrogen phosphate by single step hydrothermal method. The synthesized carbon dots have high solubility as well as stability in aqueous medium. The as‐obtained carbon dots are well monodispersed with particle sizes 1.5–4 nm. Owing to a good tunable fluorescence property and biocompatibility, the carbon dots were applied for intercellular sensing of Fe3+ ions as well as cancer cell imaging. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
Krüppel‐like factor 2 (KLF2) critically regulates activation and function of monocyte, which plays important pathogenic role in progressive joint destruction in rheumatoid arthritis (RA). It is yet to be established the molecular basis of KLF2‐mediated regulation of monocytes in RA pathogenesis. Herein, we show that a class of compound, HDAC inhibitors (HDACi) induced KLF2 expression in monocytes both in vitro and in vivo. KLF2 level was also elevated in tissues, such as bone marrow, spleen and thymus in mice after infusion of HDACi. Importantly, HDACi significantly reduced osteoclastic differentiation of monocytes with the up‐regulation of KLF2 and concomitant down‐regulation of matrixmetalloproteinases both in the expression level as well as in the protein level. In addition, HDACi reduced K/BxN serum‐induced arthritic inflammation and joint destruction in mice in a dose‐dependent manner. Finally, co‐immunoprecipitation and overexpression studies confirmed that KLF2 directly interacts with HDAC4 molecule in cells. These findings provide mechanistic evidence of KLF2‐mediated regulation of K/BxN serum‐induced arthritic inflammation.  相似文献   
7.
ABSTRACT

In this work, with Ni (110) as a model catalyst surface and CO2 as an adsorbate, a performance study of Density Functional Theory methods (functionals) is performed. CO being a possible intermediate in CO2 conversion reactions, binding energies of both, CO2 and CO, are calculated on the Ni surface and are compared with experimental data. OptPBE-vdW functional correctly predicts CO2 binding energy on Ni (?62?kJ/mol), whereas CO binding energy is correctly predicted by the rPBE-vdW functional (?138?kJ/mol). The difference in computed adsorption energies by different functionals is attributed to the calculation of gas phase CO2. Three alternate reaction systems based on a different number of C=O double bonds present in the gas phase molecule are considered to replace CO2. The error in computed adsorption energy is directly proportional to the number of C=O double bonds present in the gas phase molecule. Additionally, both functionals predict similar carbon–oxygen activation barrier (40?kJ/mol) and equivalent C1s shifts for probe species (?2.6?eV for CCH3 and +1.5?eV CO3?), with respect to adsorbed CO2. Thus, by including a correction factor of 28?kJ/mol for the computed CO2 gas phase energy, we suggest using rPBE-vdW functional to investigate CO2 conversion reactions on different metals.  相似文献   
8.
9.
Two haploid strains of Saccharomyces cerevisiae viz. MATα and MATa were grown in glucose and trehalose medium and growth patterns were compared. Both strains show similar growth, except for an extended lag phase in trehalose grown cells. In both trehalose grown strains increase in activities of both extracellular trehalase activities and simultaneous decrease in extracellular trehalose level was seen. This coincided with a sharp increase in extracellular glucose level and beginning of log phase of growth. Alcohol production was also observed. Secreted trehalase activity was detected, in addition to periplasmic activity. It appeared that extracellular trehalose was hydrolyzed into glucose by extracellular trehalase activity. This glucose was utilized by the cells for growth. The alcohol formation was due to the fermentation of glucose. Addition of extracellular trehalase caused reduction in the lag phase when grown in trehalose medium, supporting our hypothesis of extracellular utilization of trehalose.  相似文献   
10.
The human liver fluke, Opisthorchis viverrini, induces inflammation of the hepatobiliary system. Despite being constantly exposed to inimical oxygen radicals released from inflammatory cells, the parasite survives for years. Defense against oxidative damage can be mediated through glutathione and/or thioredoxin utilizing systems. Here, we report the molecular expression and biochemical characterization of a thioredoxin (Trx) from O. viverrini. O. viverrini Trx cDNA encoded a polypeptide of 105 amino acid residues, of molecular mass 11.63 kDa. The predicted protein has similarity to previously characterized thioredoxins with 26-51% identity. Recombinant O. viverrini Trx (Ov-Trx-1) was expressed as soluble protein in E. coli. The recombinant protein showed insulin reduction activity and supported the enzymatic function of O. viverrini thioredoxin peroxidase. Expression of Ov-Trx-1 at mRNA and protein levels was observed in all obtainable developmental stages of the liver fluke. Ov-Trx-1 was also detected in excretory-secretory products released by adult O. viverrini. Immunohistochemistry, Ov-Trx-1 was expressed in nearly all parasite tissue excepted ovary and mature sperms. Interestingly, Ov-Trx-1 was observed in the infected biliary epithelium but not in normal bile ducts. These results suggest that Ov-Trx-1 is essential for the parasite throughout the life cycle. In the host-parasite interaction aspect, Ov-Trx-1 may support thioredoxin peroxidase in protecting the parasite against damage induced by reactive oxygen species from inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号