首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2005年   1篇
  2003年   1篇
排序方式: 共有33条查询结果,搜索用时 898 毫秒
1.

Background

Burkholderia pseudomallei, a Tier 1 Select Agent and the cause of melioidosis, is a Gram-negative bacillus present in the environment in many tropical countries. Defining the global pattern of B. pseudomallei distribution underpins efforts to prevent infection, and is dependent upon robust environmental sampling methodology. Our objective was to review the literature on the detection of environmental B. pseudomallei, update the risk map for melioidosis, and propose international consensus guidelines for soil sampling.

Methods/Principal Findings

An international working party (Detection of Environmental Burkholderia pseudomallei Working Party (DEBWorP)) was formed during the VIth World Melioidosis Congress in 2010. PubMed (January 1912 to December 2011) was searched using the following MeSH terms: pseudomallei or melioidosis. Bibliographies were hand-searched for secondary references. The reported geographical distribution of B. pseudomallei in the environment was mapped and categorized as definite, probable, or possible. The methodology used for detecting environmental B. pseudomallei was extracted and collated. We found that global coverage was patchy, with a lack of studies in many areas where melioidosis is suspected to occur. The sampling strategies and bacterial identification methods used were highly variable, and not all were robust. We developed consensus guidelines with the goals of reducing the probability of false-negative results, and the provision of affordable and ‘low-tech’ methodology that is applicable in both developed and developing countries.

Conclusions/Significance

The proposed consensus guidelines provide the basis for the development of an accurate and comprehensive global map of environmental B. pseudomallei.  相似文献   
2.
Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown’s medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown’s agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown’s-positive colonies that are not B. pseudomallei.  相似文献   
3.
To understand molecular responses of crustacean hemocytes to virus infection, we applied 2-DE proteomics approach to investigate altered proteins in hemocytes of Penaeus vannamei during Taura syndrome virus (TSV) infection. At 24 h postinfection, quantitative intensity analysis and nano-LC-ESI-MS/MS revealed 11 forms of 8 proteins that were significantly up-regulated, whereas 9 forms of 5 proteins were significantly down-regulated in the infected shrimps. These altered proteins play important roles in host defense (hemocyanin, catalase, carboxylesterase, transglutaminase, and glutathione transferase), signal transduction (14-3-3 zeta), carbohydrate metabolism (acetylglucosamine pyrophosphorylase), cellular structure and integrity (beta-tubulin, beta-actin, tropomyosin, and myosin), and ER-stress response (protein disulfide isomerase). Semiquantitative RT-PCR and Western blot analysis confirmed the upregulation of 14-3-3 at both mRNA and protein levels. Interestingly, several altered protein spots were identified as fragments of hemocyanin. Mass spectrometric analysis showed that the hemocyanin spots at acidic and basic regions represented the C- and N-terminal hemocyanin fragments, respectively. As three-quarters of C-terminal fragments were up-regulated, whereas two-thirds of N-terminal hemocyanin fragments were down-regulated, we therefore hypothesize that C- and N-terminal hemocyanin fragments may have differential roles in hemocytes. Further investigation of these data may lead to better understanding of the molecular responses of crustacean hemocytes to TSV infection.  相似文献   
4.
Rapid assignment of bacterial pathogens into predefined populations is an important first step for epidemiological tracking. For clonal species, a single allele can theoretically define a population. For non-clonal species such as Burkholderia pseudomallei, however, shared allelic states between distantly related isolates make it more difficult to identify population defining characteristics. Two distinct B. pseudomallei populations have been previously identified using multilocus sequence typing (MLST). These populations correlate with the major foci of endemicity (Australia and Southeast Asia). Here, we use multiple Bayesian approaches to evaluate the compositional robustness of these populations, and provide assignment results for MLST sequence types (STs). Our goal was to provide a reference for assigning STs to an established population without the need for further computational analyses. We also provide allele frequency results for each population to enable estimation of population assignment even when novel STs are discovered. The ability for humans and potentially contaminated goods to move rapidly across the globe complicates the task of identifying the source of an infection or outbreak. Population genetic dynamics of B. pseudomallei are particularly complicated relative to other bacterial pathogens, but the work here provides the ability for broad scale population assignment. As there is currently no independent empirical measure of successful population assignment, we provide comprehensive analytical details of our comparisons to enable the reader to evaluate the robustness of population designations and assignments as they pertain to individual research questions. Finer scale subdivision and verification of current population compositions will likely be possible with genotyping data that more comprehensively samples the genome. The approach used here may be valuable for other non-clonal pathogens that lack simple group-defining genetic characteristics and provides a rapid reference for epidemiologists wishing to track the origin of infection without the need to compile population data and learn population assignment algorithms.  相似文献   
5.
Melioidosis is caused by Burkholderia pseudomallei, a Gram-negative bacillus, primarily found in soils in Southeast Asia and northern Australia. A recent case of melioidosis in non-endemic Arizona was determined to be the result of locally acquired infection, as the patient had no travel history to endemic regions and no previous history of disease. Diagnosis of the case was confirmed through multiple microbiologic and molecular techniques. To enhance the epidemiological analysis, we conducted several molecular genotyping procedures, including multi-locus sequence typing, SNP-profiling, and whole genome sequence typing. Each technique has different molecular epidemiologic advantages, all of which provided evidence that the infecting strain was most similar to those found in Southeast Asia, possibly originating in, or around, Malaysia. Advancements in new typing technologies provide genotyping resolution not previously available to public health investigators, allowing for more accurate source identification.  相似文献   
6.
Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively. As iron regulation of gene expression is common in bacteria, in the present studies, we have used microarray analysis to examine the effects of growth in different iron concentrations on the regulation of gene expression in B. pseudomallei and B. mallei. Gene expression profiles for these two bacterial species were similar under high and low iron growth conditions irrespective of growth phase. Growth in low iron led to reduced expression of genes encoding most respiratory metabolic systems and proteins of putative function, such as NADH-dehydrogenases, cytochrome oxidases, and ATP-synthases. In contrast, genes encoding siderophore-mediated iron transport, heme-hemin receptors, and a variety of metabolic enzymes for alternative metabolism were induced under low iron conditions. The overall gene expression profiles suggest that B. pseudomallei and B. mallei are able to adapt to the iron-restricted conditions in the host environment by up-regulating an iron-acquisition system and by using alternative metabolic pathways for energy production. The observations relative to the induction of specific metabolic enzymes during bacterial growth under low iron conditions warrants further experimentation.  相似文献   
7.
8.

Background

Congenital long QT syndrome (LQTS) is an inheritable arrhythmic disorder which is linked to at least 17 genes. The clinical characteristics and genetic mutations may be variable among different population groups and they have not yet been studied in Thai population.

Methods

Clinical characteristics were retrospectively reviewed from children and young adults with congenital long QT syndrome whose blood samples were sent for genotyping during 1998–2017. Sangers sequencing was used to sequentially identify KCNQ1 or KCNH2 genetic variants. Whole exome sequencing (WES) was used to identify variants in all other known LQTS genes.

Results

Of the 20 subjects (17 families), 45% were male, mean QTc was 550.3?±?68.8?msec?(range 470–731 msec) and total Schwartz's score was 5.6?±?1.2 points (range 3–8 points). Fifty percent of patients had events at rest, 30% had symptoms after adrenergic mediated events, and 20% were asymptomatic. We discovered pathogenic and likely pathogenic genetic variants in KCNQ1, KCNH2, and SCN5A in 6 (35%), 4 (24%), and 2 (12%) families, respectively. One additional patient had variance of unknown significance (VUS) in KCNH2 and another one in ANK2. No pathogenic genetic variant was found in 3 patients (18%). Most patients received beta-blocker and 9 (45%) had ICD implanted. LQT1 patients were either asymptomatic or had stress-induced arrhythmia. Most of the LQT2 and LQT3 patients developed symptoms at rest or during sleep.

Conclusions

Our patients with LQTS were mostly symptomatic at presentation. The genetic mutations were predominantly in LQT1, LQT2, and LQT3 genes.  相似文献   
9.
Burkholderia pseudomallei is a category B pathogen and the causative agent of melioidosis – a serious infectious disease that is typically acquired directly from environmental reservoirs. Nearly all B. pseudomallei strains sequenced to date (> 85 isolates) contain gene clusters that are related to the contact‐dependent growth inhibition (CDI) systems of γ‐proteobacteria. CDI systems from Escherichia coli and Dickeya dadantii play significant roles in bacterial competition, suggesting these systems may also contribute to the competitive fitness of B. pseudomallei. Here, we identify 10 distinct CDI systems in B. pseudomallei based on polymorphisms within the cdiA‐CT/cdiI coding regions, which are predicted to encode CdiA‐CT/CdiI toxin/immunity protein pairs. Biochemical analysis of three B. pseudomallei CdiA‐CTs revealed that each protein possesses a distinct tRNase activity capable of inhibiting cell growth. These toxin activities are blocked by cognate CdiI immunity proteins, which specifically bind the CdiA‐CT and protect cells from growth inhibition. Using Burkholderia thailandensis E264 as a model, we show that a CDI system from B. pseudomallei 1026b mediates CDI and is capable of delivering CdiA‐CT toxins derived from other B. pseudomallei strains. These results demonstrate that Burkholderia species contain functional CDI systems, which may confer a competitive advantage to these bacteria.  相似文献   
10.
Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号