首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   9篇
  国内免费   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2018年   4篇
  2017年   2篇
  2016年   7篇
  2015年   10篇
  2014年   13篇
  2013年   4篇
  2012年   8篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1983年   4篇
  1978年   2篇
  1973年   1篇
排序方式: 共有115条查询结果,搜索用时 39 毫秒
1.
Human erythrocyte membranes which had been thoroughly extracted with organic solvents contained 20 nmol of fatty acids/mg dry wt. The major fatty acids were palmitic and stearic with their monoethenoic derivatives as minor constituents. No other fatty acids were detected. When solvent-extracted membranes were digested with Pronase about 90% of the original content of fatty acids was retained in the insoluble residue. Fatty acids were linked to membrane proteins through alkali-labile bonds of which 30% were of a thiol ester and the remainder of an O-ester type. This conclusion is based on differential liberation of fatty acids by hydroxylamine at pH 7.0 and pH 11.0. Two extracts of membranes enriched in peripheral proteins (bands 1, 2, 5 and 2.1, 4.1, 4.2, 6) were prepared and extracted with organic solvents but each contained about six times less fatty acids than the parent solvent-extracted membranes. Glycophorin A contains little if any covalently bound fatty acids. Anion transporter (band 3) contains about 1 mol of thiol ester of fatty acid. This accounts for about half of the thiol ester-linked fatty acids in the parent solvent-extracted membranes. Most of the O-ester-linked fatty acids are linked to an undisclosed membrane protein.  相似文献   
2.
The region of the clock gene period (per) that encodes a repetitive tract of threonine-glycine (Thr-Gly) pairs has been compared between Dipteran species both within and outside the Drosophilidae. All the non- Drosophilidae sequences in this region are short and present a remarkably stable picture compared to the Drosophilidae, in which the region is much larger and extremely variable, both in size and composition. The accelerated evolution in the repetitive region of the Drosophilidae appears to be mainly due to an expansion of two ancestral repeats, one encoding a Thr-Gly dipeptide and the other a pentapeptide rich in serine, glycine, and asparagine or threonine. In some drosophilids the expansion involves a duplication of the pentapeptide sequence, but in Drosophila pseudoobscura both the dipeptide and the pentapeptide repeats are present in larger numbers. In the nondrosophilids, however, the pentapeptide sequence is represented by one copy and the dipeptide by two copies. These observations fulfill some of the predictions of recent theoretical models that have simulated the evolution of repetitive sequences.   相似文献   
3.
We have analyzed the conserved regions of the gene coding for the circumsporozoite protein (CSP) in 12 species of Plasmodium, the malaria parasite. The closest evolutionary relative of P. falciparum, the agent of malignant human malaria, is P. reichenowi, a chimpanzee parasite. This is consistent with the hypothesis that P. falciparum is an ancient human parasite, associated with humans since the divergence of the hominids from their closest hominoid relatives. Three other human Plasmodium species are each genetically indistinguishable from species parasitic to nonhuman primates; that is, for the DNA sequences included in our analysis, the differences between species are not greater than the differences between strains of the human species. The human P. malariae is indistinguishable from P. brasilianum, and P. vivax is indistinguishable from P. simium; P. brasilianum and P. simium are parasitic to New World monkeys. The human P. vivax-like is indistinguishable from P. simiovale, a parasite of Old World macaques. We conjecture that P. malariae, P. vivax, and P. vivax-like are evolutionarily recent human parasites, the first two at least acquired only within the last several thousand years, and perhaps within the last few hundred years, after the expansion of human populations in South America following the European colonizations. We estimate the rate of evolution of the conserved regions of the CSP gene as 2.46 x 10(-9) per site per year. The divergence between the P. falciparum and P. reichenowi lineages is accordingly dated 8.9 Myr ago. The divergence between the three lineages leading to the human parasites is very ancient, about 100 Myr old between P. malariae and P. vivax (and P. vivax-like) and about 165 Myr old between P. falciparum and the other two.   相似文献   
4.
Photosynthetic enhancement studies performed at 619 nm (excitation of Systems I and II) and at 446 nm (mainly excitation of System I) revealed an 18% photosynthetic enhancement simultaneously with a 31% reduction in glycolate excretion. This observation supports the hypothesis that some glycolate may be consumed in an oxidation process associated with System I when System II is poorly excited and the supply of electrons from the water splitting process of photosynthesis is low.  相似文献   
5.
13C-Metabolic flux analysis (13C-MFA) traditionally assumes that kinetic isotope effects from isotopically labeled compounds do not appreciably alter cellular growth or metabolism, despite indications that some biochemical reactions can be non-negligibly impacted. Here, populations of Escherichia coli were adaptively evolved for ~1000 generations on uniformly labeled 13C-glucose, a commonly used isotope for 13C-MFA. Phenotypic characterization of these evolved strains revealed ~40% increases in growth rate, with no significant difference in fitness when grown on either labeled (13C) or unlabeled (12C) glucose. The evolved strains displayed decreased biomass yields, increased glucose and oxygen uptake, and increased acetate production, mimicking what is observed after adaptive evolution on unlabeled glucose. Furthermore, full genome re-sequencing revealed that the key genetic changes underlying these phenotypic alterations were essentially the same as those acquired during adaptive evolution on unlabeled glucose. Additionally, glucose competition experiments demonstrated that the wild-type exhibits no isotopic preference for unlabeled glucose, and the evolved strains have no preference for labeled glucose. Overall, the results of this study indicate that there are no significant differences between 12C and 13C-glucose as a carbon source for E. coli growth.  相似文献   
6.
There is strong evidence that vasodilatory nitric oxide (NO) donors have anabolic effects on bone in humans. Parathyroid hormone (PTH), the only osteoanabolic drug currently approved, is also a vasodilator. We investigated whether the NO synthase inhibitor L‐NAME might alter the effect of PTH on bone by blocking its vasodilatory effect. BALB/c mice received 28 daily injections of PTH[1–34] (80 µg/kg/day) or L‐NAME (30 mg/kg/day), alone or in combination. Hindlimb blood perfusion was measured by laser Doppler imaging. Bone architecture, turnover and mechanical properties in the femur were analysed respectively by micro‐CT, histomorphometry and three‐point bending. PTH increased hindlimb blood flow by >30% within 10 min of injection (P < 0.001). Co‐treatment with L‐NAME blocked the action of PTH on blood flow, whereas L‐NAME alone had no effect. PTH treatment increased femoral cortical bone volume and formation rate by 20% and 110%, respectively (P < 0.001). PTH had no effect on trabecular bone volume in the femoral metaphysis although trabecular thickness and number were increased and decreased by 25%, respectively. Co‐treatment with L‐NAME restricted the PTH‐stimulated increase in cortical bone formation but had no clear‐cut effects in trabecular bone. Co‐treatment with L‐NAME did not affect the mechanical strength in femurs induced by iPTH. These results suggest that NO‐mediated vasorelaxation plays partly a role in the anabolic action of PTH on cortical bone. © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.  相似文献   
7.
One can determine the best dilution of a primary antibody for immunohistochemistry that uses horseradish peroxidase conjugated to a secondary antibody by testing increasing concentrations sequentially on the same tissue section. When the same tissue section is incubated repeatedly with increasing concentrations of primary antibodies to epithelial membrane antigen, smooth muscle α-actin, or vimentin using alkaline phosphatase conjugated to a secondary antibody as the reporter, the best staining was obtained with a less concentrated primary antibody than was optimal for a single staining test. The best concentration of primary antibody for single run staining using an alkaline phosphatase reporting system is usually four times the best concentration for staining with multiple runs. The optimal concentration can be determined by denaturing the residual alkaline phosphatase and extracting residual stain by incubating the section in 4:1 diglyme:phosphate buffered saline for 20 min at 80o C between tests of primary antibody concentrations. I tested the method for four chromogens from one supplier and one chromogen from a different supplier.  相似文献   
8.
Metabolic fluxes estimated from stable-isotope studies provide a key to understanding cell physiology and regulation of metabolism. A limitation of the classical method for metabolic flux analysis (MFA) is the requirement for isotopic steady state. To extend the scope of flux determination from stationary to nonstationary systems, we present a novel modeling strategy that combines key ideas from isotopomer spectral analysis (ISA) and stationary MFA. Isotopic transients of the precursor pool and the sampled products are described by two parameters, D and G parameters, respectively, which are incorporated into the flux model. The G value is the fraction of labeled product in the sample, and the D value is the fractional contribution of the feed for the production of labeled products. We illustrate the novel modeling strategy with a nonstationary system that closely resembles industrial production conditions, i.e. fed-batch fermentation of Escherichia coli that produces 1,3-propanediol (PDO). Metabolic fluxes and the D and G parameters were estimated by fitting labeling distributions of biomass amino acids measured by GC/MS to a model of E. coli metabolism. We obtained highly consistent fits from the data with 82 redundant measurements. Metabolic fluxes were estimated for 20 time points during course of the fermentation. As such we established, for the first time, detailed time profiles of in vivo fluxes. We found that intracellular fluxes changed significantly during the fed-batch. The intracellular flux associated with PDO pathway increased by 10%. Concurrently, we observed a decrease in the split ratio between glycolysis and pentose phosphate pathway from 70/30 to 50/50 as a function of time. The TCA cycle flux, on the other hand, remained constant throughout the fermentation. Furthermore, our flux results provided additional insight in support of the assumed genotype of the organism.  相似文献   
9.
10.
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-13C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC–MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and 13C-labeling dynamics of intracellular metabolites using non-stationary 13C-metabolic flux analysis (13C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号