首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   17篇
  108篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   8篇
  2011年   2篇
  2010年   2篇
  2009年   7篇
  2008年   4篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1949年   1篇
排序方式: 共有108条查询结果,搜索用时 0 毫秒
1.
Ribosome biogenesis is a major conserved cellular pathway that requires both ribosomal proteins and many preribosomal factors. Most of the pre-60S factors are recycled into the nucleus; some of them shuttle between the nucleus and the cytoplasm while a few others, like Rei1, are strictly cytoplasmic and are mostly involved in the dissociation/recycling of the pre-60S shuttling factors. Here, we investigated the role of the Jjj1 Hsp40 chaperone in ribosome biogenesis. The absence of Jjj1 leads to a cold sensitive phenotype, a defect in the relative amount of the large ribosomal subunit with the appearance of halfmers, and to cytoplasmic accumulation of shuttling factors such as Arx1 and Alb1, which stay bound to the pre-60S particles. Jjj1 is, thus, a novel pre-60S factor involved in the last cytoplasmic steps of the large ribosomal subunit biogenesis. We report the biochemical association of Jjj1 and Rei1 to similar pre-60S complexes, their two-hybrid interactions, and their functional links. Altogether, these results indicate that Rei1 and Jjj1 share many common features. However, while the functions of Jjj1 and Rei1 partially overlap, we could distinguish specific role of the two proteins in Arx1/Alb1 and Tif6 recycling. We propose that Jjj1 is preferentially required for the release of Arx1 and Alb1 shuttling factors from the cytoplasmic pre-60S particles while Rei1 is preferentially involved in their recycling.  相似文献   
2.
3.
In Saccharomyces cerevisiae, Cwc21p is a protein of unknown function that is associated with the NineTeen Complex (NTC), a group of proteins involved in activating the spliceosome to promote the pre-mRNA splicing reaction. Here, we show that Cwc21p binds directly to two key splicing factors—namely, Prp8p and Snu114p—and becomes the first NTC-related protein known to dock directly to U5 snRNP proteins. Using a combination of proteomic techniques we show that the N-terminus of Prp8p contains an intramolecular fold that is a Snu114p and Cwc21p interacting domain (SCwid). Cwc21p also binds directly to the C-terminus of Snu114p. Complementary chemical cross-linking experiments reveal reciprocal protein footprints between the interacting Prp8 and Cwc21 proteins, identifying the conserved cwf21 domain in Cwc21p as a Prp8p binding site. Genetic and functional interactions between Cwc21p and Isy1p indicate that they have related functions at or prior to the first catalytic step of splicing, and suggest that Cwc21p functions at the catalytic center of the spliceosome, possibly in response to environmental or metabolic changes. We demonstrate that SRm300, the only SR-related protein known to be at the core of human catalytic spliceosomes, is a functional ortholog of Cwc21p, also interacting directly with Prp8p and Snu114p. Thus, the function of Cwc21p is likely conserved from yeast to humans.  相似文献   
4.
    
Eighteen alkaloids have been identified in the root bark, stem bark and leaves of Strychnos kasengaensis from Zaire, They are isoretulinal, retuline, desacetyl isoretuline, desacetyl retuline, dehydroisostrychnobiline, matopensine and its mono-N-oxide, nordihydrotoxiferine, isoretuline, N(1)-desacetyl 18-acetoxyisoretuline, Wieland-Gumlich aldehyde and diol, desacetyl isoretulinal, O-acetyl retuline, 16R-isositsirikine, O-acetyl isoretuline, 11-methoxy retuline and 11-methoxy isoretuline.  相似文献   
5.
Sterols are essential lipid components of eukaryotic membranes. Here we summarize recent advances in understanding how sterols are transported between different membranes. Baker's yeast is a particularly attractive organism to dissect this lipid transport pathway, because cells can synthesize their own major sterol, ergosterol, in the membrane of the endoplasmic reticulum from where it is then transported to the plasma membrane. However, Saccharomyces cerevisiae is also a facultative anaerobic organism, which becomes sterol auxotroph in the absence of oxygen. Under these conditions, cells take up sterol from the environment and transport the lipid back into the membrane of the endoplasmic reticulum, where the free sterol becomes esterified and is then stored in lipid droplets. Steryl ester formation is thus a reliable readout to assess the back-transport of exogenously provided sterols from the plasma membrane to the endoplasmic reticulum. Structure/function analysis has revealed that the bulk membrane function of the fungal ergosterol can be provided by structurally related sterols, including the mammalian cholesterol. Foreign sterols, however, are subject to a lipid quality control cycle in which the sterol is reversibly acetylated. Because acetylated sterols are efficiently excreted from cells, the substrate specificity of the deacetylating enzymes determines which sterols are retained. Membrane-bound acetylated sterols are excreted by the secretory pathway, more soluble acetylated sterol derivatives such as the steroid precursor pregnenolone, on the other hand, are excreted by a pathway that is independent of vesicle formation and fusion. Further analysis of this lipid quality control cycle is likely to reveal novel insight into the mechanisms that ensure sterol homeostasis in eukaryotic cells. Article from a special issue on Steroids and Microorganisms.  相似文献   
6.
Abstract. Involucrin is a precursor of the keratinocyte cornified envelope that is specifically expressed in the suprabasal layers of the epidermis and other stratifying squamous epithelia. To study involucrin gene expression and the function of involucrin, we expressed a 6 kb DNA fragment of the human involucrin gene, containing approximately 2.5 kb of upstream sequence and 0.5 kb of downstream sequence, in transgenic mice. The transgene produces a 68 kDa protein that is detected by a human involucrin-specific antibody, and is expressed in a tissuespecific and differentiation-appropriate manner (i.e., expression is confined to the suprabasal layers of the epidermis, extocervix, trachea, esophagus and conjunctiva).
Soluble involucrin levels are two to four times higher in transgenic epidermal keratinocytes compared to human foreskin keratinocytes. Newborn heterozygous animals have a normal birth weight and a normal appearing epidermis and hair growth begins at 4 to 5 days of age (i.e., the same time as hair growth in non-transgenic animals). In a subpopulation of the newborn homozygous animals birth weight is reduced, the epidermis is scaly and hair growth begins late, at around 9 to 10 days of age. In addition, the hair tends to stand erect on both heterozygous and homozygous adult animals giving the appearance of diffuse alopecia.
Immunofluorescent and electron microscopy localize involucrin in the hair follicle and cornified envelope, respectively. These results suggest that overexpression of involucrin may cause abnormalities in hair follicle structure/function and cornified envelope structure. These animals provide a new model for the study of cornified envelope structure and function.  相似文献   
7.
8.
Parkin knockout (KO) mice show behavioural and biochemical changes that reproduce some of the presymptomatic aspects of Parkinson's disease, in the absence of neuronal degeneration. To provide insight into the pathogenic mechanisms underlying the preclinical stages of parkin-related parkinsonism, we searched for possible changes in the brain proteome of parkin KO mice by means of fluorescence two-dimensional difference gel electrophoresis and mass spectrometry. We identified 87 proteins that differed in abundance between wild-type and parkin KO mice by at least 45%. A high proportion of these proteins were related to energy metabolism. The levels of several proteins involved in detoxification, stress-related chaperones and components of the ubiquitin-proteasome pathway were also altered. These differences might reflect adaptive mechanisms aimed at compensating for the presence of reactive oxygen species and the accumulation of damaged proteins in parkin KO mice. Furthermore, the up-regulation of several members of the membrane-associated guanylate kinase family of synaptic scaffold proteins and several septins, including the Parkin substrate cell division control related protein 1 (CDCRel-1), may contribute to the abnormalities in neurotransmitter release previously observed in parkin KO mice. This study provides clues into possible compensatory mechanisms that protect dopaminergic neurones from death in parkin KO mice and may help us understand the preclinical deficits observed in parkin-related parkinsonism.  相似文献   
9.
Self-splicing group II and nuclear pre-mRNA introns: how similar are they?   总被引:20,自引:0,他引:20  
The splicing pathway of pre-mRNA introns bears similarities to that of the group II introns, some members of which undergo self-splicing. The snRNAs may provide the pre-mRNA introns with RNA structures in trans comparable to those available in cis in group II introns. This article examines the available evidence for the hypothesis that the catalysis of these two splicing pathways is fundamentally equivalent.  相似文献   
10.
Copolymers of acrylated derivatives of alpha-chymotrypsin and polyethylene glycol (PEG) have been prepared and used as biocatalysts for the synthesis of model peptides in organic solvent containing a low quantity of water. Other peptide couplings have been tried to point out the chemico- and stereoselectivity and examples of segment couplings are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号