首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   12篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   3篇
  2010年   5篇
  2009年   9篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   8篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   6篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1977年   1篇
  1974年   1篇
  1964年   2篇
  1962年   2篇
  1958年   1篇
  1934年   1篇
排序方式: 共有111条查询结果,搜索用时 20 毫秒
1.
We have evaluated codon usage bias in Drosophila histone genes and have obtained the nucleotide sequence of a 5,161-bp D. hydei histone gene repeat unit. This repeat contains genes for all five histone proteins (H1, H2a, H2b, H3, and H4) and differs from the previously reported one by a second EcoRI site. These D. hydei repeats have been aligned to each other and to the 5.0-kb (i.e., long) and 4.8-kb (i.e., short) histone repeat types from D. melanogaster. In each species, base composition at synonymous sites is similar to the average genomic composition and approaches that in the small intergenic spacers of the histone gene repeats. Accumulation of synonymous changes at synonymous sites after the species diverged is quite high. Both of these features are consistent with the relatively low codon usage bias observed in these genes when compared with other Drosophila genes. Thus, the generalization that abundantly expressed genes in Drosophila have high codon bias and low rates of silent substitution does not hold for the histone genes.   相似文献   
2.
To examine the contribution of local versus extrinsic influences on postnatal development of cortical neurons, we compared the maturation of deep (infragranular) layer neurons in isolated slices of neocortex grown in organotypic culture to a similar population of neurons developing in vivo. All slice cultures were prepared from sensorimotor cortices of newborn mice (P0) and neurons in these cultures were examined at daily intervals during the first 9 days in vitro (DIV). The maturational state of neurons developing in vivo over this same time period was assessed in acute slices prepared from animals of equivalent postnatal age, P1–P9. Electrophysiological recordings were obtained from neurons in both cultured and acute slices, using Lucifer yellow filled whole-cell recording electrodes, enabling subsequent morphometric analysis of the labeled cells. We report significant changes in both cellular morphology and electrical membrane properties of these deep layer cortical neurons during the frist week in culture. Morphological maturation over this time period was characterized by a two- to three-fold increase in cell body size and total process length, and an increase in dendritic complexity. In this same population of cells a three-fold decrease in input resistance and changes in the action potential waveform, including a two-fold decrease in the AP duration, also occur. The degree of morphological and electrophysiological differentiation of individual neurons was highly correlated across developmental ages, suggesting that the maturational state of a cell is reflected in both cellular morphology and intrinsic membrane properties. A remarkably similar pattern of neuronal maturation was observed in neurons in layers V, VI/SP examined in acute slices prepared from animals between P1–P9. Because our culture system preserves many aspects of the local cortical environment while eliminating normal extrinsic influences (including thalamic, brainstem, and callosal connections), our findings argue that this early phase of neuronal differentiation, including the rate and extent of dendritic growth and development of AP waveform, results from instructive and/or permissive local influences, and appears to proceed independently of the many normally present extrinsic factors. © 1993 John Wiley & Sons, Inc.  相似文献   
3.
4.
5.
The proapoptotic protein Bad is a key player in cell survival decisions, and is regulated post-translationally by several signaling networks. We expressed Bad in mouse embryonic fibroblasts to sensitize them to apoptosis, and tested cell lines derived from knock-out mice to establish the significance of the interaction between the adaptor protein Grb10 and the Raf-1 protein kinase in anti-apoptotic signaling pathways targeting Bad. When compared with wild-type cells, both Grb10 and Raf-1-deficient cells exhibit greatly enhanced sensitivity to apoptosis in response to Bad expression. Structure-function analysis demonstrates that, in this cellular model, the SH2, proline-rich, and pleckstrin homology domains of Grb10, as well as its Akt phosphorylation site and consequent binding by 14-3-3, are all necessary for its anti-apoptotic functions. As for Raf-1, its kinase activity, its ability to be phosphorylated by Src on Tyr-340/341 and the binding of its Ras-associated domain to the Grb10 SH2 domain are all necessary to promote cell survival. Silencing the expression of either Grb10 or Raf-1 by small interfering RNAs as well as mutagenesis of specific serine residues on Bad, coupled with signaling inhibitor studies, all indicate that Raf-1 and Grb10 are required for the ability of both the phosphatidylinositol 3-kinase/Akt and MAP kinase pathways to modulate the phosphorylation and inactivation of Bad. Because total Raf-1, ERK, and Akt kinase activities are not impaired in the absence of Grb10, we propose that this adapter protein creates a subpopulation of Raf-1 with specific anti-apoptotic activity.  相似文献   
6.
Thrombospondins (TSPs) undergo conformational changes upon removal of calcium. The eight C-type and five N-type calcium-binding repeats of TSP-2 form a circuitous wire that, in 2 mm calcium, interacts at its ends with more N-terminal epidermal growth factor (EGF)-like modules, EGF2 and EGF3, and the C-terminal lectin-like module. These components, along with the other EGF-like module(s), form the signature domain of TSPs. Characterization of conformation-sensitive epitopes of monoclonal antibodies to human TSP-2 and its TSP-1 homolog have given insights into the structure of the signature domain in the absence of calcium. The epitope for 4B6.13 anti-TSP-2 was localized to His-722 and Leu-703 in repeat 1C of the wire; recognition only occurred in constructs that included EGF3, the rest of the wire, and the lectin-like module and in the presence of calcium. The epitope for C6.7 anti-TSP-1 was localized to Glu-609 in the EGF2 module. The C6.7 epitope was preferentially recognized when EGF2 was expressed in the context of EGF1, EGF3, the wire, and the lectin-like module. Preferential recognition of the C6.7 epitope did not require calcium. Rotary shadowing electron microscopy of TSP-1 has shown elongation of the stalk and diminution of the C-terminal globule. We propose a model whereby at low calcium concentrations the lectin-like module drops away from EGF3 concomitant with changes in conformation of the wire and loss of the 4B6.13 epitope. A critical feature of the model is interaction of repeat 12N of the wire with EGF2 in both the presence and absence of calcium.  相似文献   
7.
Chytridiomycosis caused by Batrachochytrium dendrobatidis (Chytridiomycota) has been implicated in declines of amphibian populations on four continents. We have developed a sensitive and specific polymerase chain reaction-based assay to detect this pathogen. We isolated B. dendrobatidis from captive and wild amphibians collected across North America and sequenced the internal transcribed spacer regions of the rDNA cassette of multiple isolates. We identified two primers (Bd1a and Bd2a) that are specific to B. dendrobatidis under amplification conditions described in this study. DNA amplification with Bd1a/Bd2a primers produced a fragment of approximately 300 bp from B. dendrobatidis DNA but not from DNA of other species of chytrids or common soil fungi. The assay detected 10 zoospores or 10 pg of DNA from B. dendrobatidis and detected infections in skin samples from a tiger salamander (Ambystoma tigrinum), boreal toads (Bufo boreas), Wyoming toads (Bufo baxteri), and smooth-sided toads (Bufo guttatus). This assay required only small samples of skin and can be used to process a large number of samples.  相似文献   
8.
In healthy cells the antiapoptotic protein Bcl-2 adopts a topology typical of tail-anchored proteins with only the hydrophobic carboxyl terminus inserted into the membrane, as shown by labeling cell lysates with a membrane-impermeant sulfhydryl-specific reagent. Induction of apoptosis in cells triggered a change in the conformation of Bcl-2 such that cysteine 158 near the base of helix 5 inserted into the lipid bilayer of both endoplasmic reticulum and mitochondria where it was protected from labeling. Addition of a peptide corresponding to the BH3 domain of the proapoptotic protein Bim to cell lysates triggered a similar conformational change in Bcl-2, demonstrating that preexisting, membrane-bound Bcl-2 proteins change topology.  相似文献   
9.
The C-terminal regions of thrombospondins (TSPs) contain three elements, EGF-like modules (E), a series of Ca(2+)-binding repeats (Ca), and a C-terminal sequence (G). We have looked for interactions among these elements in four recombinant proteins based on human TSP-2: E3CaG-2, CaG-2, E3Ca-2, and Ca-2. When bound Ca(2+) was assayed by atomic absorption spectroscopy or an equilibrium dialysis protocol in which Ca(2+) was removed from the proteins prior to equilibrium dialysis, E3CaG-2 bound 22-27 Ca(2+), CaG-2 bound 17-20 Ca(2+), and E3Ca-2 and Ca-2 bound 14-20 Ca(2+). Approximately 10 of the bound Ca(2+) in E3CaG-2 were exchangeable. The far UV circular dichroism (CD) spectrum of Ca(2+)-replete E3CaG-2 contained a strong negative band at 203 nm attributable to Ca and a less intense negative band at 218 nm attributable to Ca and G. Chelation of Ca(2+) with EDTA shifted the 203 nm band of all four proteins and the 218 nm band of E3CaG-2 and CaG-2 to less negative positions. The apparent EC50 for the far UV CD transition was 0.22 mM Ca(2+) for all proteins, indicating that Ca(2+) binding to Ca is primarily responsible for the CD change. Near UV CD and intrinsic fluorescence revealed that the tryptophan residues in G are sensitive to changes in Ca(2+). Differential scanning calorimetry of the proteins in 2 mM Ca(2+) showed that E3CaG-2 melts with two transitions, 44-51 degrees C and 75-83 degrees C. The lower transition required G, while the higher transition required Ca. Both transitions were stabilized in constructs containing E3. These results indicate that E3, Ca, and G function as a complex structural unit, and that the structures of both Ca and G are influenced by the presence or absence of Ca(2+).  相似文献   
10.
Proteins of the Bcl-2 family are important regulators of cell fate. The role of these proteins in controlling mitochondrial apoptotic processes has been extensively investigated, although exact molecular mechanisms are incompletely understood. However, mounting evidence indicates that these proteins also function at the endoplasmic reticulum and other locations within the cell. Both pro- and anti-apoptotic Bcl-2 family members can regulate endoplasmic reticulum calcium, cellular pH and endoplasmic reticulum resident proteins. In this review, we discuss the activities and potential targets of Bcl-2 family members at the endoplasmic reticulum and other cellular locations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号