首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   567篇
  免费   45篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   10篇
  2019年   8篇
  2018年   10篇
  2017年   11篇
  2016年   24篇
  2015年   31篇
  2014年   28篇
  2013年   38篇
  2012年   49篇
  2011年   47篇
  2010年   26篇
  2009年   14篇
  2008年   41篇
  2007年   37篇
  2006年   18篇
  2005年   25篇
  2004年   35篇
  2003年   24篇
  2002年   33篇
  2001年   1篇
  2000年   5篇
  1999年   8篇
  1998年   11篇
  1997年   7篇
  1996年   1篇
  1995年   3篇
  1994年   6篇
  1993年   5篇
  1992年   1篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   4篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1970年   1篇
  1961年   1篇
排序方式: 共有612条查询结果,搜索用时 250 毫秒
1.
An NADP-preferring malic enzyme ((S)-malate:NADP oxidoreductase (oxalacetate-decarboxylating) EC 1.1.1.40) with a specific activity of 36.6 units per mg of protein at 60 degrees C and an isoelectric point of 5.1 was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus, strain MT-4. The purification procedure employed ion exchange chromatography, ammonium sulfate fractionation, affinity chromatography, and gel filtration. Molecular weight determinations demonstrated that the enzyme was a dimer of Mr 105,000 +/- 2,000 with apparently identical Mr 49,000 +/- 1,500 subunits. Amino acid composition of S. solfataricus enzyme was determined and found to be significantly higher in tryptophan content than the malic enzyme from Escherichia coli. In addition to the NAD(P)-dependent oxidative decarboxylation of L-malate, S. solfataricus malic enzyme was able to catalyze the decarboxylation of oxalacetate. The enzyme absolutely required divalent metal cations and it displayed maximal activity at 85 degrees C and pH 8.0 with a turnover number of 376 s-1. The enzyme showed classical saturation kinetics and no sigmoidicity was detected at different pH values and temperatures. At 60 degrees C and in the presence of 0.1 mM MnCl2, the Michaelis constants for malate, NADP, and NAD were 18, 3, and 250 microM, respectively. The S. solfataricus malic enzyme was shown to be very thermostable.  相似文献   
2.
A study was made of the effects of common protein denaturants and water-miscible organic solvents on both the stability and activity of the malic enzyme [(S)-malate:NADP+ oxidoreductase (oxaloacetate-decarboxylating); EC 1.1.1.40] from the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. At 25 degrees C, the enzyme was not inactivated in 4 M urea or 0.05% SDS over 24 h, while the half-life was 30 min in 6 M guanidine hydrochloride and 5 h in 0.075% SDS. The enzyme stability in water-miscible organic solvents at 25 degrees C is somewhat surprising: after a 24-h incubation, the enzyme was completely active in 50% dimethylformamide; it lost 15% of its initial activity in 50% methanol or 15% ethanol. However, the resistance to organic solvents was greatly reduced at higher temperatures. The enzyme was able to catalyze the malate conversion even in the presence of 1.5% Triton X-100 or sodium deoxycholate. A number of solvents were found to stimulate the malic activity independent of time. Studies with 50% methanol revealed that the activation was reversible and inversely related to the temperature; moreover, the solvent was demonstrated to exclusively affect the maximal velocity of catalysis, the Km values for both substrates being unchanged. Investigation was made to find out whether there was a correlation between enzyme stability, as well as activation, and hydrophobicity of the organic medium. The residual malic activity after incubation in the water/organic medium correlated inversely with the logarithm of the partition coefficient in octanol/H2O of the mixture used as a hydrophobicity index. On the other hand, the extent of activation depended directly on the logarithm of the molar concentration of the organic solvent required for maximal enzymatic activation. Because of its remarkable resistance to organic solvents required for maximal enzymatic activation. Because of its remarkable resistance to organic solvents and protein denaturants in general, the malic enzyme from Sulfolobus solfataricus can be considered suitable for biotechnological applications.  相似文献   
3.
We have isolated a chaperonin from the hyperthermophilic archaeon Sulfolobus solfataricus based on its ability to inhibit the spontaneous refolding at 50 degrees C of dimeric S. solfataricus malic enzyme. The chaperonin, a 920-kDa oligomer of 57-kDa subunits, displays a potassium-dependent ATPase activity with an optimum temperature at 80 degrees C. S. solfataricus chaperonin promotes correct refoldings of several guanidine hydrochloride-denatured enzymes from thermophilic and mesophilic sources. At a molar ratio of chaperonin oligomer to single polypeptide chain of 1:1, S. solfataricus chaperonin completely inhibits spontaneous refoldings and suppresses aggregation upon dilution of the denaturant; refoldings resume upon ATP hydrolysis, with yields of active molecules and rates of folding notably higher than in spontaneous processes. S. solfataricus chaperonin prevents the irreversible inactivations at 90 degrees C of several thermophilic enzymes by the binding of the denaturation intermediate; the time-courses of inactivations are unaffected and most activity is regained upon hydrolysis of ATP. S. solfataricus chaperonin completely prevents the formation of aggregates during thermal inactivation of chicken egg white lysozyme at 70 degrees C, without affecting the rate of activity loss; ATP hydrolysis results in the recovery of most lytic activity. Tryptophan fluorescence measurements provide evidence that S. solfataricus chaperonin undergoes a dramatic conformational rearrangement in the presence of ATP/Mg, and that the hydrolysis of ATP is not required for the conformational change. The ATP/Mg-induced conformation of the chaperonin is fully unable to bind the protein substrates, probably due to disappearance or modification of the substrate binding sites. This is the first archaeal chaperonin whose involvement in protein folding has been demonstrated.  相似文献   
4.
5.
Summary Dehydrocholic acid (3,7,12-trioxo-5-cholanic acid) (0.5% concentration) was completely and selectively reduced to 12-ketoursodeoxycholic acid (3, 7-dihydroxy-12-oxo- 5-cholanic acid) in a membrane reactor by means of 3-hydroxysteroid dehydrogenase and 7-hydroxysteroid dehydrogenase. Coenzyme regeneration was carried out with the glucose-glucose dehydrogenase system.  相似文献   
6.
Molecular Biology Reports - Serine hydrolases play crucial roles in many physiological and pathophysiological processes and a panel of these enzymes are targets of approved drugs. Despite this,...  相似文献   
7.
The effect of omeprazole on the mitochondrial carnitine/acylcarnitine transporter has been studied in proteoliposomes. Externally added omeprazole inhibited the carnitine/carnitine antiport catalysed by the transporter. The inhibition was partially reversed by DTE indicating that it was caused by the covalent reaction of omeprazole with Cys residue(s). Inhibition of the C-less mutant transporter indicated also the occurrence of an alternative non-covalent mechanism. The IC50 of the inhibition of the WT and the C-less CACT by omeprazole were 5.4 µM and 29 µM, respectively. Inhibition kinetics showed non competitive inhibition of the WT and competitive inhibition of the C-less. The presence of carnitine or acylcarnitines during the incubation of the proteoliposomes with omeprazole increased the inhibition. Using site-directed Cys mutants it was demonstrated that C283 and C136 were essential for covalent inhibition. Molecular docking of omeprazole with CACT indicated the formation of both covalent interactions with C136 and C283 and non-covalent interactions in agreement with the experimental data.  相似文献   
8.
Oxidative stress is considered the common effector of the cascade of degenerative events in many neurological conditions. Thus, in this paper we tested different nutraceuticals in H2O2 in vitro model to understand if could represent an adjuvant treatment for neurological diseases. In this study, nutraceuticals bacopa, lycopene, astaxanthin, and vitamin B12 were used alone or in combination in human neuronal differentiated SH-SY5Y cells upon hydrogen peroxide-induced injury and neuroprotective, neuronal death pathways were analyzed. The nutraceuticals analyzed were able to protect H2O2 cytotoxic effects, through increasing cell viability and proteins involved in neuroprotection pathways and restoring proteins involved in cell death pathways. On this basis, it is possible to propose the use of these compounds as dietary supplement for the prevention or as adjuvant to the only symptomatic treatments so far available for neurodegenerative diseases.  相似文献   
9.
The carnitine/acylcarnitine transporter is a transport system whose function is essential for the mitochondrial β-oxidation of fatty acids. Here, the presence of carnitine/acylcarnitine carrier (CACT) in nervous tissue and its sub-cellular localization in dorsal root ganglia (DRG) neurons have been investigated. Western blot analysis using a polyclonal anti-CACT antibody produced in our laboratory revealed the presence of CACT in all the nervous tissue extracts analyzed. Confocal microscopy experiments performed on fixed and permeabilized DRG neurons co-stained with the anti-CACT antibody and the mitochondrial marker MitoTracker Red clearly showed a mitochondrial localization for the carnitine/acylcarnitine transporter. The transport activity of CACT from DRG extracts reconstituted into liposomes was about 50 % in respect to liver extracts. The experimental data here reported represent the first direct evidence of the expression of the carnitine/acylcarnitine transporter in sensory neurons, thus supporting the existence of the β-oxidation pathway in these cells.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号