首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   2篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   9篇
  2011年   12篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1964年   2篇
排序方式: 共有96条查询结果,搜索用时 31 毫秒
1.
In a recent publication we showed that addition of mouse epidermal growth factor (mEGF) to MA-10 Leydig tumor cells rapidly leads to an increase in the incorporation of [3H]inositol-derived radioactivity into an unusual lipid that was identified as phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2). Other ligands that are known to bind to MA-10 cells, such as hCG and arginine vasopressin, however, did not elicit this effect. Inasmuch as mEGF modulates the differentiated functions of MA-10 cells in a number of ways, our findings raised the possibility that PI-3,4-P2 may be an intracellular mediator of these actions of mEGF. In an attempt to answer this question, we set out to determine if other ligands increase the labeling of PI-3,4-P2 in MA-10 cells prelabeled with [3H]inositol, and if such ligands mimic the diverse biological actions of mEGF on these cells. The experiments presented herein show that insulin, insulin-like growth factor-I, and transforming growth factor-alpha increase the labeling of PI-3,4-P2 in MA-10 cells, but only transforming growth factor-alpha mimics the actions of mEGF on the differentiated functions of MA-10 cells. We conclude that an increase in the labeling of PI-3,4-P2 is not sufficient to elicit these actions of mEGF.  相似文献   
2.
Frataxin is a kinetic activator of the mitochondrial supercomplex for iron-sulfur cluster assembly. Low frataxin expression or a decrease in its functionality results in Friedreich's Ataxia (FRDA). With the aim of creating new molecular tools to study this metabolic pathway, and ultimately, to explore new therapeutic strategies, we have investigated the possibility of obtaining small proteins exhibiting a high affinity for frataxin. In this study, we applied the ribosome display approach, using human frataxin as the target. We focused on Affi_224, one of the proteins that we were able to select after five rounds of selection. We have studied the interaction between both proteins and discussed some applications of this specific molecular tutor, concerning the modulation of the supercomplex activity. Affi_224 and frataxin showed a KD value in the nanomolar range, as judged by surface plasmon resonance analysis. Most likely, it binds to the frataxin acidic ridge, as suggested by the analysis of chemical shift perturbations (nuclear magnetic resonance) and computational simulations. Affi_224 was able to increase Cys NFS1 desulfurase activation exerted by the FRDA frataxin variant G130V. Importantly, Affi_224 interacts with frataxin in a human cellular model. Our results suggest quaternary addition may be a new tool to modulate frataxin function in vivo. Nevertheless, more functional experiments under physiological conditions should be carried out to evaluate Affi_224 effectiveness in FRDA cell models.  相似文献   
3.
4.
5.
Sialolithiasis represents the most common disorders of salivary glands in middle-aged patients. It has been hypothesized that the retrograde migration of bacteria from the oral cavity to gland ducts may facilitate the formation of stones. Thus, in the present study, a microbiome characterization of salivary calculi was performed to evaluate the abundance and the potential correlations between microorganisms constituting the salivary calculi microbiota. Our data supported the presence of a core microbiota of sialoliths constituted principally by Streptococcus spp., Fusobacterium spp. and Eikenella spp., along with the presence of important pathogens commonly involved in infective sialoadenitis.  相似文献   
6.
Genome integrity and cell proliferation and survival are regulated by an intricate network of pathways that includes cell cycle checkpoints, DNA repair and recombination, and programmed cell death. It makes sense that there should be a coordinated regulation of these different processes, but the components of such mechanisms remain unknown. In this report, we demonstrate that p19INK4d expression enhances cell survival under genotoxic conditions. By using p19INK4d-overexpressing clones, we demonstrated that p19INK4d expression correlates with the cellular resistance to UV treatment with increased DNA repair activity against UV-induced lesions. On the contrary, cells transfected with p19INK4d antisense cDNA show reduced ability to repair DNA damage and increased sensitivity to genotoxic insult when compared with their p19INK4d-overexpressing counterparts. Consistent with these findings, our studies also show that p19INK4d-overexpressing cells present not only a minor accumulation of UV-induced chromosomal aberrations but a lower frequency of spontaneous chromosome abnormalities than p19INK4d-antisense cells. Lastly, we suggest that p19INK4d effects are dissociated from its role as CDK4/6 inhibitor. The results presented herein support a crucial role for p19INK4d in regulating genomic stability and overall cell viability under conditions of genotoxic stress. We propose that p19INK4d would belong to a protein network that would integrate DNA repair, apoptotic and checkpoint mechanisms in order to maintain the genomic integrity.  相似文献   
7.
8.
A simple and reliable solid phase microextraction/gas chromatography–mass spectrometry (SPME/GC–MS) method was developed for the single-step determination of PCBs 126 and 153 in rat brain and serum, using liquid/liquid and solid phase extraction (SPE) as reference techniques. The multi-factor categorical experimental design used to study simultaneously the main parameters and their interactions affecting the efficiency of the method, showed that the use of an 85 μm PA exposed at 100 °C for 40 min was the optimum sampling condition for both PCBs. SPME was then validated by studying its linear dynamic (over two orders of magnitude), limits of detection (brain: 2 ng/g, serum: 0.2 ng/g) and analytical precision that was within 9% for SPME in both brain and serum. Finally, the method was used to determine the brain and blood target dose in mothers and pups after oral exposure of the mothers.  相似文献   
9.
10.
The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号