首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   7篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   8篇
  2011年   12篇
  2010年   6篇
  2009年   8篇
  2008年   14篇
  2007年   14篇
  2006年   5篇
  2005年   10篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1985年   2篇
  1967年   1篇
排序方式: 共有138条查询结果,搜索用时 71 毫秒
1.
Two-dimensional NMR methods have been used to assign aromatic and methyl group resonances in the 1H-NMR spectrum of oxidized uteroglobin. Assignments to specific amino acids are based on X-ray-determined structures of two crystal forms (C222(1) and P2(1] and on an energy-minimized X-ray structure of the C222(1) form of uteroglobin. These preliminary assignments are sufficient to probe the interaction of oxidized uteroglobin with progesterone in solution. The protein global structure is unmodified but some direct or indirect conformational changes are induced in the H1H4(H1'H4') pockets and close to Phe28 by progesterone.  相似文献   
2.
The resonances of nearly all 70 of the non-exchangeable protons of the duplex [d(GGTATACC)]2 in aqueous solution are assigned by proton two-dimensional nuclear Overhauser enhancement (2D NOE) spectra obtained in pure absorption phase at 500 MHz. Experimental and theoretical 2D NOE spectra are compared at each mixing time (100, 175, 250 and 400 ms) using two B-DNA structures: a standard B-form and an energy-minimized form. The GG and CC ends of the octamer duplex are well represented by the regular B-DNA structure. But large discrepancies from these models are observed for the 'TATA' box. All 2D NOE data are consistent with nanosecond correlation times, as indicated by non-selective proton spin-lattice relaxation times, but small variations in the correlation time are observed, suggesting that there are some local differences in mobility within the octamer duplex structure in solution.  相似文献   
3.
A 2.5-kb DNA fragment including the structural gene coding for the penicillin-binding protein 2x (PBP 2x) of Streptococcus pneumoniae has been cloned into the vector pJDC9 and expressed in Escherichia coli. Mapping of RNA polymerase binding sites by electron microscopy indicated that the pbpX promoter is well recognized by the E. coli enzyme. However, high-level expression occurred mainly under the control of the lac promoter upstream of the pJDC9 multiple cloning site. After induction with isopropyl beta-d-thiogalactopyranoside, PBP 2x was expressed as one of the major cellular proteins. PBP 2x produced in E. coli corresponded to the pneumococcal PBP 2x in terms of electrophoretic mobility, fractionation with the cytoplasmic membrane, and penicillin-binding capacity. Deletion of 30 hydrophobic N-terminal amino acid residues at positions 19-48 resulted in high-level expression of a cytoplasmic, soluble PBP 2x derivative (PBP 2x*) which still retained full beta-lactam-binding activity. A two-step procedure involving dye affinity chromatography was established for obtaining large amounts of highly purified enzymatically active PBP 2x*.  相似文献   
4.
Tight regulation of the APC/C-Cdc20 ubiquitin ligase that targets cyclin B1 for degradation is important for mitotic fidelity. The spindle assembly checkpoint (SAC) inhibits Cdc20 through the mitotic checkpoint complex (MCC). In addition, phosphorylation of Cdc20 by cyclin B1–Cdk1 independently inhibits APC/C–Cdc20 activation. This creates a conundrum for how Cdc20 is activated before cyclin B1 degradation. Here, we show that the MCC component BubR1 harbors both Cdc20 inhibition and activation activities, allowing for cross-talk between the two Cdc20 inhibition pathways. Specifically, BubR1 acts as a substrate specifier for PP2A-B56 to enable efficient Cdc20 dephosphorylation in the MCC. A mutant Cdc20 mimicking the dephosphorylated state escapes a mitotic checkpoint arrest, arguing that restricting Cdc20 dephosphorylation to the MCC is important. Collectively, our work reveals how Cdc20 can be dephosphorylated in the presence of cyclin B1-Cdk1 activity without causing premature anaphase onset.  相似文献   
5.
6.
Colorectal neoplasia is the third most common cancer worldwide. Environmental factors such as diet are known to be involved in the etiology of this cancer. Several epidemiological studies have suggested that specific neo-formed mutagenic compounds related to meat consumption are an underlying factor involved in the association between diet and colorectal cancer. Heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) are known mutagens and possible human carcinogens formed at the same time in meat during cooking processes. We studied the genotoxicity of the model PAH benzo(a)pyrene (B(a)P) and HCA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), alone or in mixture, using the mouse intestinal cell line ApcMin/+, mimicking the early step of colorectal carcinogenesis, and control Apc+/+ cells. The genotoxicity of B(a)P and PhIP was investigated using both cell lines, through the quantification of B(a)P and PhIP derived DNA adducts, as well as the use of a genotoxic assay based on histone H2AX phosphorylation quantification. Our results demonstrate that heterozygous Apc mutated cells are more effective to metabolize B(a)P. We also established in different experiments that PhIP and B(a)P were more genotoxic on ApcMin/+ cells compared to Apc+/+. Moreover when tested in mixture, we observed a combined genotoxicity of B(a)P and PhIP on the two cell lines, with an increase of PhIP derived DNA adducts in the presence of B(a)P. Because of their genotoxic effects observed on heterozygous Apc mutated cells and their possible combined genotoxic effects, both B(a)P and PhIP, taken together, could be implicated in the observed association between meat consumption and colorectal cancer.  相似文献   
7.
Social psychology is fundamentally the study of individuals in groups, yet there remain basic unanswered questions about group formation, structure, and change. We argue that the problem is methodological. Until recently, there was no way to track who was interacting with whom with anything approximating valid resolution and scale. In the current study we describe a new method that applies recent advances in image-based tracking to study incipient group formation and evolution with experimental precision and control. In this method, which we term “in vivo behavioral tracking,” we track individuals’ movements with a high definition video camera mounted atop a large field laboratory. We report results of an initial study that quantifies the composition, structure, and size of the incipient groups. We also apply in-vivo spatial tracking to study participants’ tendency to cooperate as a function of their embeddedness in those crowds. We find that participants form groups of seven on average, are more likely to approach others of similar attractiveness and (to a lesser extent) gender, and that participants’ gender and attractiveness are both associated with their proximity to the spatial center of groups (such that women and attractive individuals are more likely than men and unattractive individuals to end up in the center of their groups). Furthermore, participants’ proximity to others early in the study predicted the effort they exerted in a subsequent cooperative task, suggesting that submergence in a crowd may predict social loafing. We conclude that in vivo behavioral tracking is a uniquely powerful new tool for answering longstanding, fundamental questions about group dynamics.  相似文献   
8.
When attacked by natural enemies some insect pests, including many aphid species, alert neighboring conspecifics with alarm pheromones. Cornicle secretions with pheromones benefit the attacked aphid but are costly to produce, while alarm pheromone benefits probably fall largely on alerted conspecifics. Given these variable benefits, the likelihood of a secretion may change depending on aphid density. Thus, we first hypothesized that the common alarm pheromone in aphids, E-ß-farnesene (EBF), was present in soybean aphid (Aphis glycines Matsumura) cornicle secretions and would elicit an alarm response in aphids exposed to it. Second, since aphids other than the secretor also benefit from cornicle secretions, we hypothesized that the likelihood of secretion would increase concurrently with the density of neighboring clonal conspecifics. Third, because alarm reaction behavior (e.g. feeding cessation) is probably costly, we hypothesized that alarm reaction behavior would decrease as conspecific density (i.e. alternative prey for an attacking natural enemy) increased. We found that soybean aphids 1) produce cornicle secretions using EBF as an alarm pheromone, 2) are less likely to release cornicle secretions when alone than in a small group (~10 individuals), but that the rate of secretion does not increase further with additional conspecific density, and 3) also exhibit alarm reaction behavior in response to cornicle secretions independent of aphid density. We show that soybean aphids can use their cornicle secretions to warn their neighbors of probable attack by natural enemies, but that both secretion and alarm reaction behavior does not change as density of nearby conspecifics rises above a few individuals.  相似文献   
9.
Unlike gaseous C1 feedstocks for acetogenic bacteria, there has been less attention on liquid C1 feedstocks, despite benefits in terms of energy efficiency, mass transfer and integration within existing fermentation infrastructure. Here, we present growth of Eubacterium limosum ATCC8486 using methanol and formate as substrates, finding evidence for the first time of native butanol production. We varied ratios of methanol-to-formate in batch serum bottle fermentations, showing butyrate is the major product (maximum specific rate 220 ± 23 mmol-C gDCW-1day-1). Increasing this ratio showed methanol is the key feedstock driving the product spectrum towards more reduced products, such as butanol (maximum titre 2.0 ± 1.1 mM-C). However, both substrates are required for a high growth rate (maximum 0.19 ± 0.011 h-1) and cell density (maximum 1.2 ± 0.043 gDCW l-1), with formate being the preferred substrate. In fact, formate and methanol are consumed in two distinct growth phases – growth phase 1, on predominately formate and growth phase 2 on methanol, which must balance. Because the second growth varied according to the first growth on formate, this suggests butanol production is due to overflow metabolism, similar to 2,3-butanediol production in other acetogens. However, further research is required to confirm the butanol production pathway in E. limosum, particularly given, unlike other substrates, methanol likely results in mostly NADH generation, not reduced ferredoxin.  相似文献   
10.
Hydrogenases are metalloproteins capable of catalyzing the interconversion between molecular hydrogen and protons and electrons. The iron–sulfur clusters within the enzyme enable rapid relay of electrons which are either consumed or generated at the active site. Their unparalleled catalytic efficiency has attracted attention, especially for potential use in H2 production and/or fuel cell technologies. However, there are limitations to using hydrogenases, especially due to their high O2 sensitivity. The subclass, called [FeFe] hydrogenases, are particularly more vulnerable to O2 but proficient in H2 production. In this review, we provide an overview of mechanistic and protein engineering studies focused on understanding and enhancing O2 tolerance of the enzyme. The emphasis is on ongoing studies that attempt to overcome O2 sensitivity of the enzyme while it catalyzes H2 production in an aerobic environment. We also discuss pioneering attempts to utilize the enzyme in biological H2 production and other industrial processes, as well as our own perspective on future applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号