首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   7篇
  2015年   1篇
  2014年   3篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1997年   1篇
  1995年   2篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1979年   1篇
排序方式: 共有66条查询结果,搜索用时 21 毫秒
1.
A model system was established to determine whether intergeneric plasmid transfer occurs in soil and how various soil variables affect the rate of plasmid transfer. The donor bacterium, Escherichia coli HB101 carrying plasmid pBLK1-2 (pRK2073::Tn5), and the recipient bacterium, Rhizobium fredii USDA 201, were inoculated into a sterile Adelphia fine-sandy-loam soil. Transconjugants were enumerated by direct plating on antibiotic-amended HM [N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid; 2-(N-morpholino) ethanesulfonic acid] salts medium. Randomly chosen transconjugants were verified by serological typing and Southern hybridization with a Tn5 gene probe. The maximum transfer frequency was observed after 5 days of incubation (1.8 x 10(-4) per recipient). The influences of clay (0 to 50% addition), organic matter (0 to 15% addition), soil pH (4.3 to 7.25), soil moisture (2 to 40%), and soil incubation temperature (5 to 40 degrees C) on plasmid transfer were examined. Maximum transfer frequencies were noted at a clay addition of 15%, an organic matter addition of 5%, a soil pH of 7.25, a soil moisture content of 8%, and a soil incubation temperature of 28 degrees C. These results indicate that intergeneric plasmid transfer may occur in soil and that soil variables may significantly affect the rate of transfer.  相似文献   
2.
Platelet-activating factor in the rabbit uterus during early pregnancy   总被引:3,自引:0,他引:3  
Platelet-activating factor (PAF) concentrations were low in the non-pregnant, oestrous uterus (mean +/- s.e.m.: 2.2 +/- 1.2 pmol/g, n = 3). However, uterine PAF increased dramatically during pregnancy to a maximum of 37.8 +/- 4.90 pmol/g (n = 7) on Day 5. By Day 7, PAF concentrations in the uteri of pregnant rabbits had returned to levels similar to those found at oestrus. In contrast, uterine PAF in pseudopregnant rabbits peaked at 30.6 +/- 2.8 pmol/g (n = 8) on Day 4, declined to 20.5 +/- 2.4 pmol/g (n = 8) on Day 5 and then remained at that concentration through Day 7. Uterine PAF co-migrated with synthetic PAF (1-O-hexadecyl-2-acetyl-sn-glycero-phosphocholine) in both thin-layer and normal-phase high-performance liquid chromatography. PAF activity in the uterus during pregnancy and pseudopregnancy was found almost exclusively in the endometrium; little or no PAF was found in myometrium, uterine flushings or blastocysts. While no PAF was detected in blastocysts on Days 5 and 6 of pregnancy, the presence of the embryo appears to modulate biosynthesis and/or degradation of PAF by the uterus, since PAF decreased significantly in uterine tissue apposed to the implanting embryo (but not in similar areas between such attachment sites). Increased concentrations of PAF in the preimplantation rabbit uterus followed by a dramatic decrease on the day of blastocyst attachment suggest that this potent inflammatory autacoid may play a vital role in implantation.  相似文献   
3.
The role of platelet-activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in initiating glycogen breakdown in the fetal rabbit lung was assessed by intraperitoneal administration of this potent ether-linked glycerophospholipid. Forty-five min after in utero injection of PAF (2.5 X 10(-7) mol), fetal pulmonary and hepatic glycogen concentrations were reduced from 326 to 256 and from 9.8 to 6.6 micrograms of glycogen/mg protein, respectively. Glycolytic activity was similarly increased as judged by an elevation of lactate (2-fold) in lung, liver, and plasma upon PAF injection. These actions of PAF were dose- and time-dependent. The glycogenolytic response did not occur when an equimolar dose of the inactive enantiomer, D-PAF was injected. Pretreatment of the fetus with a specific PAF receptor antagonist, SRI-63-441, prevented the PAF response. We have previously demonstrated (Hoffman, D. R., Truong, C. T., and Johnston, J. M. (1986) Biochim. Biophys. Acta 879, 88-96) that PAF biosynthesis and PAF concentrations increase significantly on day 24 of fetal rabbit lung development. A concurrent decrease in pulmonary glycogen concentration at this point of gestation is potentially reflective of the PAF-induced action. Thus, these observations would suggest a role for PAF in the normal physiology of fetal lung maturation.  相似文献   
4.
Metal hyperaccumulator plants like Thlaspi caerulescens J. & C. Presl. are used for phytoremediation of contaminated soils. Since little is known about the rhizosphere of hyperaccumulators, the influence of T. caerulescens was compared with the effects of Trifolium pratense L. on soil microbes. High- and low-metal soils were collected near a zinc smelter in Palmerton, Penn. Soil pH was adjusted to 5.8 and 6.8 by the addition of Ca(OH)2. Liming increased bacterial populations and decreased metal toxicity to levels allowing growth of both plants. The effects of the plants on total (culturable) bacteria, total fungi, as well as cadmium- and zinc-resistant populations were assessed in nonrhizosphere and rhizosphere soil. Both plants increased microbial populations in rhizosphere soil compared with nonrhizosphere soil. Microbial populations were higher in soils planted with T. pratense, but higher ratios of metal-resistant bacteria were found in the presence of T. caerulescens. We hypothesize that T. caerutescens acidifies its rhizosphere. Soil acidification in the rhizosphere of T. caerulescens would affect metal uptake by increasing available metals around the roots and consequently, increase the selection for metal-resistant bacteria. Soil acidification may be part of the hyperaccumulation process enhancing metal uptake from soil.  相似文献   
5.
Li  Yin-M.  Chaney  Rufus  Brewer  Eric  Roseberg  Richard  Angle  J. Scott  Baker  Alan  Reeves  Roger  Nelkin  Jay 《Plant and Soil》2003,249(1):107-115
In recent R&D work, we have made progress in developing a commercial technology using hyperaccumulator plant species to phytoextract nickel (Ni) from contaminated and/or Ni-rich soils. An on-going program is being carried out to develop a genetically improved phytoextraction plant that combines favorable agronomic and Ni accumulation characteristics. Genetically diverse Ni hyperaccumulator species and ecotypes of Alyssum were collected and then evaluated in both greenhouse and field using serpentine and Ni-refinery contaminated soils. Large genetic variation was found in those studies. Mean shoot Ni concentrations in field-grown plants ranged from 4200 to 20400 mg kg–1. We have been studying several soil management practices that may affect the efficiency of Ni phytoextraction. Soil pH is an important factor affecting absorption of metals by plants. An unexpected result of both greenhouse and field experiments was that Ni uptake by two Alyssum species was reduced at lower soil pH and increased at higher soil pH. At higher pH, plant yield was improved also. In soil fertility management studies, we found that N application significantly increased plant biomass, but did not affect plant shoot Ni concentration. These findings indicate that soil management will be important for commercial phytoextraction. A number of field trials have been carried out to study planting methods, population density, weed control practices, harvest schedule and methods, pollination control, and seed processing. Such crop management studies have improved phytoextraction efficiency and provide a tool for farmers to conduct commercial production. We have done some work to develop efficient and cost-effective methods of Ni recovery. Recovery of energy by biomass burning or pyrolysis could help make phytoextraction more cost-effective. The progress made in our recent studies will enable us to apply this technology commercially in the near future.  相似文献   
6.
7.
Degradation of Alyssum murale biomass in soil   总被引:2,自引:0,他引:2  
The Ni-hyperaccumulating plant Alyssum murale accumulates exceptionally high concentrations of nickel in its aboveground biomass. The reasons for hyperaccumulation remain unproven; however, it has been proposed that elemental alelopathy might be important. High-Ni leaves shed by the plant may create a "toxic zone" around the plant where germination or growth of competing plants is inhibited. The efficacy of this argument will partially depend upon the rate at which leaves degrade in soil and free metals are released, and the subsequent rate at which metals are bound to soil constituents. To test the degradation of biomass of hyperaccumulators, A. murale was grown on both high- and low-Ni soils to achieve high- (12.0 g Ni/kg) and low- (0.445 g Ni/kg) Ni biomass. Shredded leaf and stem biomass were added to a serpentine soil from Oregon that was originally used to grow high-Ni biomass and a low-Ni control soil from Maryland. Biomass Ni was readily soluble and extractable, suggesting near immediate release as biomass was added to soil Extractable nickel in soil amended with biomass declined rapidly over time due to Ni binding in soil These results suggest that Ni released from biomass of Ni hyperaccumulators may significantly affect their immediate niche only for short periods of time soon after leaf fall, but repeated application may create high Ni levels under and around hyperaccumulators.  相似文献   
8.
ML Hanke  A Angle  T Kielian 《PloS one》2012,7(8):e42476
Bacterial biofilms represent a significant therapeutic challenge based on their ability to evade host immune and antibiotic-mediated clearance. Recent studies have implicated IL-1β in biofilm containment, whereas Toll-like receptors (TLRs) had no effect. This is intriguing, since both the IL-1 receptor (IL-1R) and most TLRs impinge on MyD88-dependent signaling pathways, yet the role of this key adaptor in modulating the host response to biofilm growth is unknown. Therefore, we examined the course of S. aureus catheter-associated biofilm infection in MyD88 knockout (KO) mice. MyD88 KO animals displayed significantly increased bacterial burdens on catheters and surrounding tissues during early infection, which coincided with enhanced dissemination to the heart and kidney compared to wild type (WT) mice. The expression of several proinflammatory mediators, including IL-6, IFN-γ, and CXCL1 was significantly reduced in MyD88 KO mice, primarily at the later stages of infection. Interestingly, immunofluorescence staining of biofilm-infected tissues revealed increased fibrosis in MyD88 KO mice concomitant with enhanced recruitment of alternatively activated M2 macrophages. Taken in the context of previous studies with IL-1β, TLR2, and TLR9 KO mice, the current report reveals that MyD88 signaling is a major effector pathway regulating fibrosis and macrophage polarization during biofilm formation. Together these findings represent a novel example of the divergence between TLR and MyD88 action in the context of S. aureus biofilm infection.  相似文献   
9.
Plants that have evolved to survive on metal‐rich soils—metallophytes—have key values that must drive research of their unique properties and ultimately their conservation. The ability of metallophytes to tolerate extreme metal concentrations commends them for revegetation of mines and metal‐contaminated sites. Metallophytes can also be exploited in environmental technologies, for example, phytostabilization, phytoremediation, and phytomining. Actions towards conserving metallophyte species are imperative, as metallophytes are increasingly under threat of extinction from mining activity. Although many hundreds of papers describe both the biology and applications of metallophytes, few have investigated the urgent need to conserve these unique species. This paper identifies the current state of metallophyte research, and advocates future research needs for the conservation of metallophyte biodiversity and the sustainable uses of metallophyte species in restoration, rehabilitation, contaminated site remediation, and other nascent phytotechnologies. Six fundamental questions are addressed: (1) Is enough known about the global status of metallophytes to ensure their conservation? (2) Are metallophytes threatened by the activities of the minerals industry, and can their potential for the restoration or rehabilitation of mined and disturbed land be realized? (3) What problems exist in gaining prior informed consent to access metallophyte genetic resources and how can the benefits arising from their uses be equitably shared? (4) What potential do metallophytes offer as a resource base for phytotechnologies? (5) Can genetic modification be used to “design” metallophytes to use in the remediation of contaminated land? (6) Does the prospect of using metallophytes in site remediation and restoration raise ethical issues?  相似文献   
10.
Abstract Leaching of genetically engineered microbes (GEMs) through soil is a significant concern related to groundwater quality. The objective of this study was to examine the leaching, survival and gene transfer of a genetically engineered microbe and indigenous recipients of pR68.45 in nonsterile, undisturbed soil columns. Pseudomonas aeruginosa PAO25, containing the plasmid R68.45, was added to the surface of undisturbed soil columns (10 cm diameter × 80 cm length). Unsaturated flow conditions were maintained by 100 ml daily additions of 2 mM CaCl2 for a period of 70 days. The population of the GEM exhibited a significant ( P = 0.05) linear decline with time. The GEM leached only to a depth of 30–40 cm in 70 days. Transfer of pR68.45 was shown to occur from P. aeruginosa into the indigenous bacterial population although relatively low numbers of transconjugants were observed (log 2 cfu g−1 dry soil). The number of transconjugants also decreased with depth and time. Leaching of transconjugants, however, occured more readily than that of the GEM, probably as a result of plasmid transfer into smaller, more mobile bacteria. At 70 days incubation, no GEMs were detected in the columns, while transconjugants were observed at several depths. These results demonstrate the importance of examining both the survival and movement of GEMs and transconjugants in soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号